您的位置:首页 > 运维架构 > Linux

linux 2.6 启动流程分析

2009-03-10 23:16 585 查看
内核在启动时可以传递一个字符串命令行,来控制内核启动的过程,例如:
"console=ttyS2,115200 mem=64M@0xA0000000"
这里指定了控制台是串口2,波特率是115200,内存大小是64M,物理基地址是0xA0000000。
另外我们可以在内核中定义一些全局变量,使用这些全局变量控制内核的配置,例如usb驱动中定义了
static int nousb; /* Disable USB when built into kernel image */
这个变量为1,则整个usb驱动不初始化,如果想将其置1,可在字符串命令行中添加nousb=1。
在操作该变量之前,还要让系统知道该变量,方法是:
__module_param_call("",nousb,param_set_bool,param_get_bool,&nousb,0444);
__module_param_call这个宏定义在kernel/include/linux/moduleparam.h
原型如下:
#define __module_param_call(prefix, name, set, get, arg, perm) /
static char __param_str_##name[] = prefix #name; /
static struct kernel_param const __param_##name /
__attribute_used__ /
__attribute__ ((unused,__section__ ("__param"),aligned(sizeof(void *)))) /
= { __param_str_##name, perm, set, get, arg }

它定义了一个kernel_param类型的变量,这个变量被放到了段__param,
kernel_param结构体的定义是:
struct kernel_param {
const char *name;
unsigned int perm;
param_set_fn set;
param_get_fn get;
void *arg;
};
__param这个段的声明有些平台是在arch/../../vmlinux.lds.S,而大多数平台是放到
kernel/include/asm-generic/vmlinux.lds.h中,定义如下:
__param : AT(ADDR(__param) - LOAD_OFFSET) { /
VMLINUX_SYMBOL(__start___param) = .; /
*(__param) /
VMLINUX_SYMBOL(__stop___param) = .; /
}
内核启动时就会对字符串命令进行解析,在kernel/init/main.c中,内核启动函数start_kernel中
对外部数组进行了声明:
extern struct kernel_param __start___param[], __stop___param[];
然后调用函数parse_args对数组进行解析:
parse_args("Booting kernel", command_line, __start___param,
__stop___param - __start___param,
&unknown_bootoption);
其中command_line就是要解析的字符串命令行,unknown_bootoption是函数指针,它用来获取指定参数的=右边的值。
parse_args就会在数组中找到和nousb名称一样的kernel_param变量,并调用它的set函数对其进行付值。

内核启动地址的确定

内核编译链接过程是依靠vmlinux.lds文件,以arm为例vmlinux.lds文件位于kernel/arch/arm/vmlinux.lds,
但是该文件是由vmlinux-armv.lds.in生成的,根据编译选项的不同源文件还可以是vmlinux-armo.lds.in,
vmlinux-armv-xip.lds.in。
vmlinux-armv.lds的生成过程在kernel/arch/arm/Makefile中
LDSCRIPT = arch/arm/vmlinux-armv.lds.in
arch/arm/vmlinux.lds: arch/arm/Makefile $(LDSCRIPT) /
$(wildcard include/config/cpu/32.h) /
$(wildcard include/config/cpu/26.h) /
$(wildcard include/config/arch/*.h)
@echo ' Generating $@'
@sed 's/TEXTADDR/$(TEXTADDR)/;s/DATAADDR/$(DATAADDR)/' $(LDSCRIPT) >$@
vmlinux-armv.lds.in文件的内容:
OUTPUT_ARCH(arm)
ENTRY(stext)
SECTIONS
{
. = TEXTADDR;
.init : { /* Init code and data */
_stext = .;
__init_begin = .;
*(.text.init)
__proc_info_begin = .;
*(.proc.info)
__proc_info_end = .;
__arch_info_begin = .;
*(.arch.info)
__arch_info_end = .;
__tagtable_begin = .;
*(.taglist)
__tagtable_end = .;
*(.data.init)
. = ALIGN(16);
__setup_start = .;
*(.setup.init)
__setup_end = .;
__initcall_start = .;
*(.initcall.init)
__initcall_end = .;
. = ALIGN(4096);
__init_end = .;
}

其中TEXTADDR就是内核启动的虚拟地址,定义在kernel/arch/arm/Makefile中:
ifeq ($(CONFIG_CPU_32),y)
PROCESSOR = armv
TEXTADDR = 0xC0008000
LDSCRIPT = arch/arm/vmlinux-armv.lds.in
endif
需要注意的是这里是虚拟地址而不是物理地址。
一般情况下都在生成vmlinux后,再对内核进行压缩成为zImage,压缩的目录是kernel/arch/arm/boot。
下载到flash中的是压缩后的zImage文件,zImage是由压缩后的vmlinux和解压缩程序组成,如下图所示:
|-----------------|/ |-----------------|
| | / | |
| | / | decompress code |
| vmlinux | / |-----------------| zImage
| | /| |
| | | |
| | | |
| | | |
| | /|-----------------|
| | /
| | /
| | /
|-----------------|/

zImage链接脚本也叫做vmlinux.lds,位于kernel/arch/arm/boot/compressed。
是由同一目录下的vmlinux.lds.in文件生成的,内容如下:
OUTPUT_ARCH(arm)
ENTRY(_start)
SECTIONS
{
. = LOAD_ADDR;
_load_addr = .;

. = TEXT_START;
_text = .;

.text : {
_start = .;

其中LOAD_ADDR就是zImage中解压缩代码的ram偏移地址,TEXT_START是内核ram启动的偏移地址,这个地址是物理地址。
在kernel/arch/arm/boot/Makefile文件中定义了:
ZTEXTADDR =0
ZRELADDR = 0xa0008000
ZTEXTADDR就是解压缩代码的ram偏移地址,ZRELADDR是内核ram启动的偏移地址,这里看到指定ZTEXTADDR的地址为0,
明显是不正确的,因为我的平台上的ram起始地址是0xa0000000,在Makefile文件中看到了对该地址设置的几行注释:
# We now have a PIC decompressor implementation. Decompressors running
# from RAM should not define ZTEXTADDR. Decompressors running directly
# from ROM or Flash must define ZTEXTADDR (preferably via the config)
他的意识是如果是在ram中进行解压缩时,不用指定它在ram中的运行地址,如果是在flash中就必须指定他的地址。所以
这里将ZTEXTADDR指定为0,也就是没有真正指定地址。
在kernel/arch/arm/boot/compressed/Makefile文件有一行脚本:
SEDFLAGS = s/TEXT_START/$(ZTEXTADDR)/;s/LOAD_ADDR/$(ZRELADDR)/;s/BSS_START/$(ZBSSADDR)/
使得TEXT_START = ZTEXTADDR,LOAD_ADDR = ZRELADDR。
这样vmlinux.lds的生成过程如下:
vmlinux.lds: vmlinux.lds.in Makefile $(TOPDIR)/arch/$(ARCH)/boot/Makefile $(TOPDIR)/.config
@sed "$(SEDFLAGS)" < vmlinux.lds.in > $@

以上就是我对内核启动地址的分析,总结一下内核启动地址的设置:
1、设置kernel/arch/arm/Makefile文件中的
TEXTADDR = 0xC0008000
内核启动的虚拟地址
2、设置kernel/arch/arm/boot/Makefile文件中的
ZRELADDR = 0xa0008000
内核启动的物理地址
如果需要从flash中启动还需要设置
ZTEXTADDR地址。

内核解压缩过程

内核压缩和解压缩代码都在目录kernel/arch/arm/boot/compressed,
编译完成后将产生vmlinux、head.o、misc.o、head-xscale.o、piggy.o这几个文件,
head.o是内核的头部文件,负责初始设置;
misc.o将主要负责内核的解压工作,它在head.o之后;
head-xscale.o文件主要针对Xscale的初始化,将在链接时与head.o合并;
piggy.o是一个中间文件,其实是一个压缩的内核(kernel/vmlinux),只不过没有和初始化文件及解压文件链接而已;
vmlinux是(没有--lw:zImage是压缩过的内核)压缩过的内核,就是由piggy.o、head.o、misc.o、head-xscale.o组成的。
在BootLoader完成系统的引导以后并将Linux内核调入内存之后,调用bootLinux(),
这个函数将跳转到kernel的起始位置。如果kernel没有压缩,就可以启动了。
如果kernel压缩过,则要进行解压,在压缩过的kernel头部有解压程序。
压缩过得kernel入口第一个文件源码位置在arch/arm/boot/compressed/head.S。
它将调用函数decompress_kernel(),这个函数在文件arch/arm/boot/compressed/misc.c中,
decompress_kernel()又调用proc_decomp_setup(),arch_decomp_setup()进行设置,
然后使用在打印出信息“Uncompressing Linux...”后,调用gunzip()。将内核放于指定的位置。
以下分析head.S文件:
(1)对于各种Arm CPU的DEBUG输出设定,通过定义宏来统一操作。
(2)设置kernel开始和结束地址,保存architecture ID。
(3)如果在ARM2以上的CPU中,用的是普通用户模式,则升到超级用户模式,然后关中断。
(4)分析LC0结构delta offset,判断是否需要重载内核地址(r0存入偏移量,判断r0是否为零)。
这里是否需要重载内核地址,我以为主要分析arch/arm/boot/Makefile、arch/arm/boot/compressed/Makefile
和arch/arm/boot/compressed/vmlinux.lds.in三个文件,主要看vmlinux.lds.in链接文件的主要段的位置,
LOAD_ADDR(_load_addr)=0xA0008000,而对于TEXT_START(_text、_start)的位置只设为0,BSS_START(__bss_start)=ALIGN(4)。
对于这样的结果依赖于,对内核解压的运行方式,也就是说,内核解压前是在内存(RAM)中还是在FLASH上,
因为这里,我们的BOOTLOADER将压缩内核(zImage)移到了RAM的0xA0008000位置,我们的压缩内核是在内存(RAM)从0xA0008000地址开始顺序排列,
因此我们的r0获得的偏移量是载入地址(0xA0008000)。接下来的工作是要把内核镜像的相对地址转化为内存的物理地址,即重载内核地址。
(5)需要重载内核地址,将r0的偏移量加到BSS region和GOT table中。
(6)清空bss堆栈空间r2-r3。
(7)建立C程序运行需要的缓存,并赋于64K的栈空间。
(8)这时r2是缓存的结束地址,r4是kernel的最后执行地址,r5是kernel境象文件的开始地址。检查是否地址有冲突。
将r5等于r2,使decompress后的kernel地址就在64K的栈之后。
(9)调用文件misc.c的函数decompress_kernel(),解压内核于缓存结束的地方(r2地址之后)。此时各寄存器值有如下变化:
r0为解压后kernel的大小
r4为kernel执行时的地址
r5为解压后kernel的起始地址
r6为CPU类型值(processor ID)
r7为系统类型值(architecture ID)
(10)将reloc_start代码拷贝之kernel之后(r5+r0之后),首先清除缓存,而后执行reloc_start。
(11)reloc_start将r5开始的kernel重载于r4地址处。
(12)清除cache内容,关闭cache,将r7中architecture ID赋于r1,执行r4开始的kernel代码。
下面简单介绍一下解压缩过程,也就是函数decompress_kernel实现的功能:
解压缩代码位于kernel/lib/inflate.c,inflate.c是从gzip源程序中分离出来的。包含了一些对全局数据的直接引用。
在使用时需要直接嵌入到代码中。gzip压缩文件时总是在前32K字节的范围内寻找重复的字符串进行编码,
在解压时需要一个至少为32K字节的解压缓冲区,它定义为window[WSIZE]。inflate.c使用get_byte()读取输入文件,
它被定义成宏来提高效率。输入缓冲区指针必须定义为inptr,inflate.c中对之有减量操作。inflate.c调用flush_window()
来输出window缓冲区中的解压出的字节串,每次输出长度用outcnt变量表示。在flush_window()中,还必
须对输出字节串计算CRC并且刷新crc变量。在调用gunzip()开始解压之前,调用makecrc()初始化CRC计算表。
最后gunzip()返回0表示解压成功。
我们在内核启动的开始都会看到这样的输出:
Uncompressing Linux...done, booting the kernel.
这也是由decompress_kernel函数内部输出的,它调用了puts()输出字符串,
puts是在kernel/include/asm-arm/arch-pxa/uncompress.h中实现的。
执行完解压过程,再返回到head.S中,启动内核:
call_kernel: bl cache_clean_flush
bl cache_off
mov r0, #0
mov r1, r7 @ restore architecture number
mov pc, r4 @ call kernel

下面就开始真正的内核了。
汇编部分(1)
在网上参考很多高手的文章,又加入了自己的一点儿内容,整理了一下,里面还有很多不明白的地方,而且也会有理解错误的地方,望高手指点,自己也会不断进行修改
当进入linux内核后,arch/arm/kernel/head-armv.S是内核最先执行的一个文件,包括从内核入口ENTRY(stext)到
start_kernel之间的初始化代码,下面以我所是用的平台intel pxa270为例,说明一下他的汇编代码:
1 .section ".text.init",#alloc,#execinstr
2 .type stext, #function
/* 内核入口点 */
3 ENTRY(stext)
4 mov r12, r0
/* 程序状态,禁止FIQ、IRQ,设定SVC模式 */
5 mov r0, #F_BIT | I_BIT | MODE_SVC @ make sure svc mode
6 msr cpsr_c, r0 @ and all irqs disabled
/* 判断CPU类型,查找运行的CPU ID值与Linux编译支持的ID值是否支持 */
7 bl __lookup_processor_type
/* 判断如果r10的值为0,则表示函数执行错误,跳转到出错处理,*/
/* 出错处理函数__error的实现代码定义在debug-armv.S中,这里就不再作过多介绍了 */
8 teq r10, #0 @ invalid processor?
9 moveq r0, #'p' @ yes, error 'p'
10 beq __error
/* 判断体系类型,查看R1寄存器的Architecture Type值是否支持 */
11 bl __lookup_architecture_type
/* 判断如果r7的值为0,则表示函数执行错误,跳转到出错处理,*/
12 teq r7, #0 @ invalid architecture?
13 moveq r0, #'a' @ yes, error 'a'
14 beq __error
/* 创建核心页表 */
15 bl __create_page_tables
16 adr lr, __ret @ return address
17 add pc, r10, #12 @ initialise processor
@ (return control reg)

第5行,准备进入SVC工作模式,同时关闭中断(I_BIT)和快速中断(F_BIT)
第7行,查看处理器类型,主要是为了得到处理器的ID以及页表的flags。
第11行,查看一些体系结构的信息。
第15行,建立页表。
第17行,跳转到处理器的初始化函数,其函数地址是从__lookup_processor_type中得到的,
需要注意的是第16行,当处理器初始化完成后,会直接跳转到__ret去执行,
这是由于初始化函数最后的语句是mov pc, lr。
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: