您的位置:首页 > 运维架构 > Linux

Linux下PCI设备驱动程序开发

2008-12-23 14:54 477 查看
PCI是一种广泛采用的总线标准,它提供了许多优于其它总线标准(如EISA)的新特性,目前已经成为计算机系统中应用最为广泛,并且最为通用的总线标准。Linux的内核能较好地支持PCI总线,本文以Intel 386体系结构为主,探讨了在Linux下开发PCI设备驱动程序的基本框架。

一、PCI总线系统体系结构

PCI是外围设备互连(Peripheral Component Interconnect)的简称,作为一种通用的总线接口标准,它在目前的计算机系统中得到了非常广泛的应用。PCI提供了一组完整的总线接口规范,其目的是描述如何将计算机系统中的外围设备以一种结构化和可控化的方式连接在一起,同时它还刻画了外围设备在连接时的电气特性和行为规约,并且详细定义了计算机系统中的各个不同部件之间应该如何正确地进行交互。

无论是在基于Intel芯片的PC机中,或是在基于Alpha芯片的工作站上,PCI毫无疑问都是目前使用最广泛的一种总线接口标准。同旧式的ISA总线不同,PCI将计算机系统中的总线子系统与存储子系统完全地分开,CPU通过一块称为PCI桥(PCI-Bridge)的设备来完成同总线子系统的交互,如图1所示。

图1 PCI子系统的体系结构

*/

}

/* 中断处理模块 */

static void demo_interrupt(int irq, void *dev_id, struct pt_regs *regs)

{

/* */

}

/* 设备文件操作接口 */

static struct file_operations demo_fops = {

owner: THIS_MODULE, /* demo_fops所属的设备模块 */

read: demo_read, /* 读设备操作*/

write: demo_write, /* 写设备操作*/

ioctl: demo_ioctl, /* 控制设备操作*/

mmap: demo_mmap, /* 内存重映射操作*/

open: demo_open, /* 打开设备操作*/

release: demo_release /* 释放设备操作*/

/* */

};

/* 设备模块信息 */

static struct pci_driver demo_pci_driver = {

name: demo_MODULE_NAME, /* 设备模块名称 */

id_table: demo_pci_tbl, /* 能够驱动的设备列表 */

probe: demo_probe, /* 查找并初始化设备 */

remove: demo_remove /* 卸载设备模块 */

/* */

};

static int __init demo_init_module (void)

{

/* */

}

static void __exit demo_cleanup_module (void)

{

pci_unregister_driver(&demo_pci_driver);

}

/* 加载驱动程序模块入口 */

module_init(demo_init_module);

/* 卸载驱动程序模块入口 */

module_exit(demo_cleanup_module);
上面这段代码给出了一个典型的PCI设备驱动程序的框架,是一种相对固定的模式。需要注意的是,同加载和卸载模块相关的函数或数据结构都要在前面加上__init、__exit等标志符,以使同普通函数区分开来。构造出这样一个框架之后,接下去的工作就是如何完成框架内的各个功能模块了。

3. 初始化设备模块

在Linux系统下,想要完成对一个PCI设备的初始化,需要完成以下工作:

检查PCI总线是否被Linux内核支持;

检查设备是否插在总线插槽上,如果在的话则保存它所占用的插槽的位置等信息。

读出配置头中的信息提供给驱动程序使用。

当Linux内核启动并完成对所有PCI设备进行扫描、登录和分配资源等初始化操作的同时,会建立起系统中所有PCI设备的拓扑结构,此后当PCI驱动程序需要对设备进行初始化时,一般都会调用如下的代码:

static int __init demo_init_module (void)

{

/* 检查系统是否支持PCI总线 */

if (!pci_present())

return -ENODEV;

/* 注册硬件驱动程序 */

if (!pci_register_driver(&demo_pci_driver)) {

pci_unregister_driver(&demo_pci_driver);

return -ENODEV;

}

/* */

return 0;

}
驱动程序首先调用函数pci_present( )检查PCI总线是否已经被Linux内核支持,如果系统支持PCI总线结构,这个函数的返回值为0,如果驱动程序在调用这个函数时得到了一个非0的返回值,那么驱动程序就必须得中止自己的任务了。在2.4以前的内核中,需要手工调用pci_find_device( )函数来查找PCI设备,但在2.4以后更好的办法是调用pci_register_driver( )函数来注册PCI设备的驱动程序,此时需要提供一个pci_driver结构,在该结构中给出的probe探测例程将负责完成对硬件的检测工作。

static int __init demo_probe(struct pci_dev *pci_dev, const struct pci_device_id *pci_id)

{

struct demo_card *card;

/* 启动PCI设备 */

if (pci_enable_device(pci_dev))

return -EIO;

/* 设备DMA标识 */

if (pci_set_dma_mask(pci_dev, DEMO_DMA_MASK)) {

return -ENODEV;

}

/* 在内核空间中动态申请内存 */

if ((card = kmalloc(sizeof(struct demo_card), GFP_KERNEL)) == NULL) {

printk(KERN_ERR "pci_demo: out of memory\n");

return -ENOMEM;

}

memset(card, 0, sizeof(*card));

/* 读取PCI配置信息 */

card->iobase = pci_resource_start (pci_dev, 1);

card->pci_dev = pci_dev;

card->pci_id = pci_id->device;

card->irq = pci_dev->irq;

card->next = devs;

card->magic = DEMO_CARD_MAGIC;

/* 设置成总线主DMA模式 */

pci_set_master(pci_dev);

/* 申请I/O资源 */

request_region(card->iobase, 64, card_names[pci_id->driver_data]);

return 0;

}
4. 打开设备模块

在这个模块里主要实现申请中断、检查读写模式以及申请对设备的控制权等。在申请控制权的时候,非阻塞方式遇忙返回,否则进程主动接受调度,进入睡眠状态,等待其它进程释放对设备的控制权。

static int demo_open(struct inode *inode, struct file *file)

{

/* 申请中断,注册中断处理程序 */

request_irq(card->irq, &demo_interrupt, SA_SHIRQ,

card_names[pci_id->driver_data], card)) {

/* 检查读写模式 */

if(file->f_mode & FMODE_READ) {

/* */

}

if(file->f_mode & FMODE_WRITE) {

/* */

}

/* 申请对设备的控制权 */

down(&card->open_sem);

while(card->open_mode & file->f_mode) {

if (file->f_flags & O_NONBLOCK) {

/* NONBLOCK模式,返回-EBUSY */

up(&card->open_sem);

return -EBUSY;

} else {

/* 等待调度,获得控制权 */

card->open_mode |= f_mode & (FMODE_READ | FMODE_WRITE);

up(&card->open_sem);

/* 设备打开计数增1 */

MOD_INC_USE_COUNT;

/* */

}

}

}
5. 数据读写和控制信息模块

PCI设备驱动程序可以通过demo_fops 结构中的函数demo_ioctl( ),向应用程序提供对硬件进行控制的接口。例如,通过它可以从I/O寄存器里读取一个数据,并传送到用户空间里:

static int demo_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)

{

/* */

switch(cmd) {

case DEMO_RDATA:

/* 从I/O端口读取4字节的数据 */

val = inl(card->iobae + 0x10);

/* 将读取的数据传输到用户空间 */

return 0;

}

/* */

}

事实上,在demo_fops里还可以实现诸如demo_read( )、demo_mmap( )等操作,Linux内核源码中的driver目录里提供了许多设备驱动程序的源代码,找那里可以找到类似的例子。在对资源的访问方式上,除了有I/O指令以外,还有对外设I/O内存的访问。对这些内存的操作一方面可以通过把I/O内存重新映射后作为普通内存进行操作,另一方面也可以通过总线主DMA(Bus Master DMA)的方式让设备把数据通过DMA传送到系统内存中。

6. 中断处理模块

PC的中断资源比较有限,只有0~15的中断号,因此大部分外部设备都是以共享的形式申请中断号的。当中断发生的时候,中断处理程序首先负责对中断进行识别,然后再做进一步的处理。

static void demo_interrupt(int irq, void *dev_id, struct pt_regs *regs)

{

struct demo_card *card = (struct demo_card *)dev_id;

u32 status;

spin_lock(&card->lock);

/* 识别中断 */

status = inl(card->iobase + GLOB_STA);

if(!(status & INT_MASK))

{

spin_unlock(&card->lock);

return; /* not for us */

}

/* 告诉设备已经收到中断 */

outl(status & INT_MASK, card->iobase + GLOB_STA);

spin_unlock(&card->lock);

/* 其它进一步的处理,如更新DMA缓冲区指针等 */

}
7. 释放设备模块

释放设备模块主要负责释放对设备的控制权,释放占用的内存和中断等,所做的事情正好与打开设备模块相反:

static int demo_release(struct inode *inode, struct file *file)

{

/* */

/* 释放对设备的控制权 */

card->open_mode &= (FMODE_READ | FMODE_WRITE);

/* 唤醒其它等待获取控制权的进程 */

wake_up(&card->open_wait);

up(&card->open_sem);

/* 释放中断 */

free_irq(card->irq, card);

/* 设备打开计数增1 */

MOD_DEC_USE_COUNT;

/* */

}
8. 卸载设备模块

卸载设备模块与初始化设备模块是相对应的,实现起来相对比较简单,主要是调用函数pci_unregister_driver( )从Linux内核中注销设备驱动程序:

static void __exit demo_cleanup_module (void)

{

pci_unregister_driver(&demo_pci_driver);

}
四、小结

PCI总线不仅是目前应用广泛的计算机总线标准,而且是一种兼容性最强、功能最全的计算机总线。而Linux作为一种新的操作系统,其发展前景是无法估量的,同时也为PCI总线与各种新型设备互连成为可能。由于Linux源码开放,因此给连接到PCI总线上的任何设备编写驱动程序变得相对容易。本文介绍如何编译Linux下的PCI驱动程序,针对的内核版本是2.4。

引用于"随点BBS" "2beanet":www.2beanet.com/bbs http://www.2beanet.com/
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: