您的位置:首页 > 其它

实战DeviceIoControl:通过API访问设备驱动程序

2007-07-06 16:52 471 查看
Q 在MSDN的那个demo中,将设备名换成“A:”取A盘参数,先用资源管理器读一下盘,再运行这个程序可以成功,但换一张盘后就失败;换成“CDROM0”取CDROM参数,无论如何都不行。这个问题如何解决呢?
A 取软盘参数是从软盘上读取格式化后的信息,也就是必须执行读操作,这一点与硬盘不同。将CreateFile中的访问方式改为GENERIC_READ就行了。
IOCTL_DISK_GET_DRIVE_GEOMETRY这个I/O控制码,对软盘和硬盘有效,但对一些可移动媒介如CD/DVD-ROM、TAPE等就不管用了。要取CDROM参数,还得另辟蹊径。IOCTL_STORAGE_GET_MEDIA_TYPES_EX能够帮我们解决问题。

Q 使用这些I/O控制码,需要什么样的输入输出数据格式呢?

A DeviceIoControl使用这两个控制码时,都不需要输入数据。
IOCTL_DISK_GET_DRIVE_GEOMETRY直接输出一个DISK_GEOMETRY结构:

typedef struct _DISK_GEOMETRY {
LARGE_INTEGER Cylinders; // 柱面数
MEDIA_TYPE MediaType; // 介质类型
DWORD TracksPerCylinder; // 每柱面的磁道数
DWORD SectorsPerTrack; // 每磁道的扇区数
DWORD BytesPerSector; // 每扇区的字节数
} DISK_GEOMETRY;

IOCTL_STORAGE_GET_MEDIA_TYPES_EX输出一个GET_MEDIA_TYPES结构:

typedef struct _GET_MEDIA_TYPES {
DWORD DeviceType; // 设备类型
DWORD MediaInfoCount; // 介质信息条数
DEVICE_MEDIA_INFO MediaInfo[1]; // 介质信息
} GET_MEDIA_TYPES;

让我们来看一下DEVICE_MEDIA_INFO结构的定义:

typedef struct _DEVICE_MEDIA_INFO {
union {
struct {
LARGE_INTEGER Cylinders; // 柱面数
STORAGE_MEDIA_TYPE MediaType; // 介质类型
DWORD TracksPerCylinder; // 每柱面的磁道数
DWORD SectorsPerTrack; // 每磁道的扇区数
DWORD BytesPerSector; // 每扇区的字节数
DWORD NumberMediaSides; // 介质面数
DWORD MediaCharacteristics; // 介质特性
} DiskInfo; // 硬盘信息
struct {
LARGE_INTEGER Cylinders; // 柱面数
STORAGE_MEDIA_TYPE MediaType; // 介质类型
DWORD TracksPerCylinder; // 每柱面的磁道数
DWORD SectorsPerTrack; // 每磁道的扇区数
DWORD BytesPerSector; // 每扇区的字节数
DWORD NumberMediaSides; // 介质面数
DWORD MediaCharacteristics; // 介质特性
} RemovableDiskInfo; // “可移动盘”信息
struct {
STORAGE_MEDIA_TYPE MediaType; // 介质类型
DWORD MediaCharacteristics; // 介质特性
DWORD CurrentBlockSize; // 块的大小
} TapeInfo; // 磁带信息
} DeviceSpecific;
} DEVICE_MEDIA_INFO;

其中CD-ROM属于“可移动盘”的范围。请注意,GET_MEDIA_TYPES结构本身只定义了一条DEVICE_MEDIA_INFO,额外的DEVICE_MEDIA_INFO需要紧接此结构的另外的空间。

Q 调用方法我了解了,请用VC举个例子来实现我所期待已久的功能吧?

A 好,现在就演示一下如何取软盘/硬盘/光盘的参数。测试时,记得要有软盘/光盘插在驱动器里喔!
首先,用MFC AppWizard生成一个单文档的应用程序,取名为DiskGeometry,让它的View基于CEditView。
然后,添加以下的.h和.cpp文件。

//////////////////////////////////////////////////////////////////////////////
// GetDiskGeometry.h
//////////////////////////////////////////////////////////////////////////////

#if !defined(GET_DISK_GEOMETRY_H__)
#define GET_DISK_GEOMETRY_H__

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

#include <winioctl.h>

BOOL GetDriveGeometry(const char* filename, DISK_GEOMETRY *pdg);

#endif // !defined(GET_DISK_GEOMETRY_H__)

//////////////////////////////////////////////////////////////////////////////
// GetDiskGeometry.cpp
//////////////////////////////////////////////////////////////////////////////

#include "stdafx.h"
#include "GetDiskGeometry.h"

// IOCTL_STORAGE_GET_MEDIA_TYPES_EX可能返回不止一条DEVICE_MEDIA_INFO,故定义足够的空间
#define MEDIA_INFO_SIZE sizeof(GET_MEDIA_TYPES)+15*sizeof(DEVICE_MEDIA_INFO)

// filename -- 用于设备的文件名
// pdg -- 参数缓冲区指针
BOOL GetDriveGeometry(const char* filename, DISK_GEOMETRY *pdg)
{
HANDLE hDevice; // 设备句柄
BOOL bResult; // DeviceIoControl的返回结果
GET_MEDIA_TYPES *pmt; // 内部用的输出缓冲区
DWORD dwOutBytes; // 输出数据长度

// 打开设备
hDevice = ::CreateFile(filename, // 文件名
GENERIC_READ, // 软驱需要读盘
FILE_SHARE_READ | FILE_SHARE_WRITE, // 共享方式
NULL, // 默认的安全描述符
OPEN_EXISTING, // 创建方式
0, // 不需设置文件属性
NULL); // 不需参照模板文件

if(hDevice == INVALID_HANDLE_VALUE)
{
// 设备无法打开...
return FALSE;
}

// 用IOCTL_DISK_GET_DRIVE_GEOMETRY取磁盘参数
bResult = ::DeviceIoControl(hDevice, // 设备句柄
IOCTL_DISK_GET_DRIVE_GEOMETRY, // 取磁盘参数
NULL, 0, // 不需要输入数据
pdg, sizeof(DISK_GEOMETRY), // 输出数据缓冲区
&dwOutBytes, // 输出数据长度
(LPOVERLAPPED)NULL); // 用同步I/O

// 如果失败,再用IOCTL_STORAGE_GET_MEDIA_TYPES_EX取介质类型参数
if(!bResult)
{
pmt = (GET_MEDIA_TYPES *)new BYTE[MEDIA_INFO_SIZE];

bResult = ::DeviceIoControl(hDevice, // 设备句柄
IOCTL_STORAGE_GET_MEDIA_TYPES_EX, // 取介质类型参数
NULL, 0, // 不需要输入数据
pmt, MEDIA_INFO_SIZE, // 输出数据缓冲区
&dwOutBytes, // 输出数据长度
(LPOVERLAPPED)NULL); // 用同步I/O

if(bResult)
{
// 注意到结构DEVICE_MEDIA_INFO是在结构DISK_GEOMETRY的基础上扩充的
// 为简化程序,用memcpy代替如下多条赋值语句:
// pdg->MediaType = (MEDIA_TYPE)pmt->MediaInfo[0].DeviceSpecific.DiskInfo.MediaType;
// pdg->Cylinders = pmt->MediaInfo[0].DeviceSpecific.DiskInfo.Cylinders;
// pdg->TracksPerCylinder = pmt->MediaInfo[0].DeviceSpecific.DiskInfo.TracksPerCylinder;
// ... ...
::memcpy(pdg, pmt->MediaInfo, sizeof(DISK_GEOMETRY));
}

delete pmt;
}

// 关闭设备句柄
::CloseHandle(hDevice);

return (bResult);
}

然后,在Toolbar的IDR_MAINFRAME上添加一个按钮,ID为ID_GET_DISK_GEOMETRY。打开ClassWizard,在DiskGeometryView中

添加ID_GET_DISK_GEOMETRY的映射函数OnGetDiskGeometry。打开DiskGeometryView.cpp,包含头文件GetDiskGeometry.h。

在OnGetDiskGeometry中,添加以下代码

const char *szDevName[]=
{
"////.//A:",
"////.//B:",
"////.//PhysicalDrive0",
"////.//PhysicalDrive1",
"////.//PhysicalDrive2",
"////.//PhysicalDrive3",
"////.//Cdrom0",
"////.//Cdrom1",
};
DISK_GEOMETRY dg;
ULONGLONG DiskSize;
BOOL bResult;
CString strMsg;
CString strTmp;

for(int i=0; i<sizeof(szDevName)/sizeof(char*); i++)
{
bResult = GetDriveGeometry(szDevName[i], &dg);

strTmp.Format("/r/n%s result = %s/r/n", szDevName[i], bResult ? "success" : "failure");
strMsg+=strTmp;

if(!bResult) continue;

strTmp.Format(" Media Type = %d/r/n", dg.MediaType);
strMsg+=strTmp;

strTmp.Format(" Cylinders = %I64d/r/n", dg.Cylinders);
strMsg+=strTmp;

strTmp.Format(" Tracks per cylinder = %ld/r/n", (ULONG) dg.TracksPerCylinder);
strMsg+=strTmp;

strTmp.Format(" Sectors per track = %ld/r/n", (ULONG) dg.SectorsPerTrack);
strMsg+=strTmp;

strTmp.Format(" Bytes per sector = %ld/r/n", (ULONG) dg.BytesPerSector);
strMsg+=strTmp;

DiskSize = dg.Cylinders.QuadPart * (ULONG)dg.TracksPerCylinder *
(ULONG)dg.SectorsPerTrack * (ULONG)dg.BytesPerSector;
strTmp.Format(" Disk size = %I64d (Bytes) = %I64d (Mb)/r/n", DiskSize, DiskSize / (1024 *1024));
strMsg+=strTmp;
}

CEdit& Edit = GetEditCtrl();

Edit.SetWindowText(strMsg);

Q 在NT/2000/XP中,我想用VC编写应用程序访问硬件设备,如获取磁盘参数、读写绝对扇区数据、测试光驱实际速度等,该从哪里入手呢?

A 在NT/2000/XP中,应用程序可以通过API函数DeviceIoControl来实现对设备的访问—获取信息,发送命令,交换数据等。利用该接口函数向指定的设备驱动发送正确的控制码及数据,然后分析它的响应,就可以达到我们的目的。

DeviceIoControl的函数原型为

BOOL DeviceIoControl(
HANDLE hDevice, // 设备句柄
DWORD dwIoControlCode, // 控制码
LPVOID lpInBuffer, // 输入数据缓冲区指针
DWORD nInBufferSize, // 输入数据缓冲区长度
LPVOID lpOutBuffer, // 输出数据缓冲区指针
DWORD nOutBufferSize, // 输出数据缓冲区长度
LPDWORD lpBytesReturned, // 输出数据实际长度单元长度
LPOVERLAPPED lpOverlapped // 重叠操作结构指针
);

设备句柄用来标识你所访问的设备。
发送不同的控制码,可以调用设备驱动程序的不同类型的功能。在头文件winioctl.h中,预定义的标准设备控制码,都以IOCTL或FSCTL开头。例如,IOCTL_DISK_GET_DRIVE_GEOMETRY是对物理驱动器取结构参数(介质类型、柱面数、每柱面磁道数、每磁道扇区数等)的控制码,FSCTL_LOCK_VOLUME是对逻辑驱动器的卷加锁的控制码。
输入输出数据缓冲区是否需要,是何种结构,以及占多少字节空间,完全由不同设备的不同操作类型决定。在头文件winioctl.h中,已经为标准设备预定义了一些输入输出数据结构。重叠操作结构指针设置为NULL,DeviceIoControl将进行阻塞调用;否则,应在编程时按异步操作设计。

Q 设备句柄是从哪里获得的?

A 设备句柄可以用API函数CreateFile获得。它的原型为

HANDLE CreateFile(
LPCTSTR lpFileName, // 文件名
DWORD dwDesiredAccess, // 访问方式
DWORD dwShareMode, // 共享方式
LPSECURITY_ATTRIBUTES lpSecurityAttributes, // 安全描述符指针
DWORD dwCreationDisposition, // 创建方式
DWORD dwFlagsAndAttributes, // 文件属性及标志
HANDLE hTemplateFile // 模板文件的句柄
);

CreateFile这个函数用处很多,这里我们用它“打开”设备驱动程序,得到设备的句柄。操作完成后用CloseHandle关闭设备句柄。
与普通文件名有所不同,设备驱动的“文件名”形式固定为“//./DeviceName”(注意在C程序中该字符串写法为“////.//DeviceName”),DeviceName必须与设备驱动程序内规定的设备名称一致。
一般地,调用CreateFile获得设备句柄时,访问方式参数设置为0或GENERIC_READ|GENERIC_WRITE,共享方式参数设置为FILE_SHARE_READ|FILE_SHARE_WRITE,创建方式参数设置为OPEN_EXISTING,其它参数设置为0或NULL。

Q 可是,我怎么知道设备名称是什么呢?

A 一些存储设备的名称是微软规定好的,不可能有什么变化。大体列出如下
软盘驱动器 A:, B:
逻辑驱动器 C:, D:, E:, ……
物理驱动器 PHYSICALDRIVEx
CD-ROM, DVD/ROM CDROMx
磁带机 TAPEx
其中,物理驱动器不包括软驱和光驱。逻辑驱动器可以是IDE/SCSI/PCMCIA/USB接口的硬盘分区(卷)、光驱、MO、CF卡等,甚至是虚拟盘。x=0,1,2 ……
其它的设备名称需通过驱动接口的GUID调用设备管理函数族取得,这里暂不讨论。

Q 请举一个简单的例子说明如何通过DeviceIoControl访问设备驱动程序

A 这里有一个从MSDN上摘抄来的demo程序,演示在NT/2000/XP中如何通过DeviceIoControl获取硬盘的基本参数。

/* The code of interest is in the subroutine GetDriveGeometry. The
code in main shows how to interpret the results of the IOCTL call. */

#include <windows.h>
#include <winioctl.h>

BOOL GetDriveGeometry(DISK_GEOMETRY *pdg)
{
HANDLE hDevice; // handle to the drive to be examined
BOOL bResult; // results flag
DWORD junk; // discard results

hDevice = CreateFile("////.//PhysicalDrive0", // drive to open
0, // no access to the drive
FILE_SHARE_READ | // share mode
FILE_SHARE_WRITE,
NULL, // default security attributes
OPEN_EXISTING, // disposition
0, // file attributes
NULL); // do not copy file attributes

if (hDevice == INVALID_HANDLE_VALUE) // cannot open the drive
{
return (FALSE);
}

bResult = DeviceIoControl(hDevice, // device to be queried
IOCTL_DISK_GET_DRIVE_GEOMETRY, // operation to perform
NULL, 0, // no input buffer
pdg, sizeof(*pdg), // output buffer
&junk, // # bytes returned
(LPOVERLAPPED) NULL); // synchronous I/O

CloseHandle(hDevice);

return (bResult);
}

int main(int argc, char *argv[])
{
DISK_GEOMETRY pdg; // disk drive geometry structure
BOOL bResult; // generic results flag
ULONGLONG DiskSize; // size of the drive, in bytes

bResult = GetDriveGeometry (&pdg);

if (bResult)
{
printf("Cylinders = %I64d/n", pdg.Cylinders);
printf("Tracks per cylinder = %ld/n", (ULONG) pdg.TracksPerCylinder);
printf("Sectors per track = %ld/n", (ULONG) pdg.SectorsPerTrack);
printf("Bytes per sector = %ld/n", (ULONG) pdg.BytesPerSector);

DiskSize = pdg.Cylinders.QuadPart * (ULONG)pdg.TracksPerCylinder *
(ULONG)pdg.SectorsPerTrack * (ULONG)pdg.BytesPerSector;
printf("Disk size = %I64d (Bytes) = %I64d (Mb)/n", DiskSize,
DiskSize / (1024 * 1024));
}
else
{
printf ("GetDriveGeometry failed. Error %ld./n", GetLastError ());
}

return ((int)bResult);
}
DOS命令DISKCOPY给我很深的印象,现在也有许多“克隆”软件,可以对磁盘进行全盘复制。我想,要制作磁盘镜像文件,DeviceIoControl应该很有用武之地吧?

A 是的。这里举一个制作软盘镜像文件,功能类似于“DISKCOPY”的例子。
本例实现其功能的核心代码如下:

// 打开磁盘
HANDLE OpenDisk(LPCTSTR filename)
{
HANDLE hDisk;

// 打开设备
hDisk = ::CreateFile(filename, // 文件名
GENERIC_READ | GENERIC_WRITE, // 读写方式
FILE_SHARE_READ | FILE_SHARE_WRITE, // 共享方式
NULL, // 默认的安全描述符
OPEN_EXISTING, // 创建方式
0, // 不需设置文件属性
NULL); // 不需参照模板文件

return hDisk;
}

// 获取磁盘参数
BOOL GetDiskGeometry(HANDLE hDisk, PDISK_GEOMETRY lpGeometry)
{
DWORD dwOutBytes;
BOOL bResult;

// 用IOCTL_DISK_GET_DRIVE_GEOMETRY取磁盘参数
bResult = ::DeviceIoControl(hDisk, // 设备句柄
IOCTL_DISK_GET_DRIVE_GEOMETRY, // 取磁盘参数
NULL, 0, // 不需要输入数据
lpGeometry, sizeof(DISK_GEOMETRY), // 输出数据缓冲区
&dwOutBytes, // 输出数据长度
(LPOVERLAPPED)NULL); // 用同步I/O

return bResult;
}

// 从指定磁道开始读磁盘
BOOL ReadTracks(HANDLE hDisk, PDISK_GEOMETRY lpGeometry, LPVOID pBuf, DWORD dwStartCylinder, DWORD

dwCylinderNumber)
{
DWORD VirtBufSize;
DWORD BytesRead;

// 大小
VirtBufSize = lpGeometry->TracksPerCylinder * lpGeometry->SectorsPerTrack * lpGeometry->BytesPerSector;

// 偏移
::SetFilePointer(hDisk, VirtBufSize*dwStartCylinder, NULL, FILE_BEGIN);

return ::ReadFile(hDisk, pBuf, VirtBufSize*dwCylinderNumber, &BytesRead, NULL);
}

// 从指定磁道开始写磁盘
BOOL WriteTracks(HANDLE hDisk, PDISK_GEOMETRY lpGeometry, LPVOID pBuf, DWORD dwStartCylinder, DWORD

dwCylinderNumber)
{
DWORD VirtBufSize;
DWORD BytesWritten;

// 大小
VirtBufSize = lpGeometry->TracksPerCylinder * lpGeometry->SectorsPerTrack * lpGeometry->BytesPerSector;

// 偏移
::SetFilePointer(hDisk, VirtBufSize*dwStartCylinder, NULL, FILE_BEGIN);

return ::WriteFile(hDisk, pBuf, VirtBufSize*dwCylinderNumber, &BytesWritten, NULL);
}

// 从指定磁道开始格式化磁盘
BOOL LowLevelFormatTracks(HANDLE hDisk, PDISK_GEOMETRY lpGeometry, DWORD dwStartCylinder, DWORD

dwCylinderNumber)
{
FORMAT_PARAMETERS FormatParameters;
PBAD_TRACK_NUMBER lpBadTrack;
DWORD dwOutBytes;
DWORD dwBufSize;
BOOL bResult;

FormatParameters.MediaType = lpGeometry->MediaType;
FormatParameters.StartCylinderNumber = dwStartCylinder;
FormatParameters.EndCylinderNumber = dwStartCylinder + dwCylinderNumber - 1;
FormatParameters.StartHeadNumber = 0;
FormatParameters.EndHeadNumber = lpGeometry->TracksPerCylinder - 1;

dwBufSize = lpGeometry->TracksPerCylinder * sizeof(BAD_TRACK_NUMBER);

lpBadTrack = (PBAD_TRACK_NUMBER) new BYTE[dwBufSize];

// 用IOCTL_DISK_FORMAT_TRACKS对连续磁道进行低级格式化
bResult = ::DeviceIoControl(hDisk, // 设备句柄
IOCTL_DISK_FORMAT_TRACKS, // 低级格式化
&FormatParameters, sizeof(FormatParameters), // 输入数据缓冲区
lpBadTrack, dwBufSize, // 输出数据缓冲区
&dwOutBytes, // 输出数据长度
(LPOVERLAPPED)NULL); // 用同步I/O

delete lpBadTrack;

return bResult;
}

// 将卷锁定
BOOL LockVolume(HANDLE hDisk)
{
DWORD dwOutBytes;
BOOL bResult;

// 用FSCTL_LOCK_VOLUME锁卷
bResult = ::DeviceIoControl(hDisk, // 设备句柄
FSCTL_LOCK_VOLUME, // 锁卷
NULL, 0, // 不需要输入数据
NULL, 0, // 不需要输出数据
&dwOutBytes, // 输出数据长度
(LPOVERLAPPED)NULL); // 用同步I/O

return bResult;
}

// 将卷解锁
BOOL UnlockVolume(HANDLE hDisk)
{
DWORD dwOutBytes;
BOOL bResult;

// 用FSCTL_UNLOCK_VOLUME开卷锁
bResult = ::DeviceIoControl(hDisk, // 设备句柄
FSCTL_UNLOCK_VOLUME, // 开卷锁
NULL, 0, // 不需要输入数据
NULL, 0, // 不需要输出数据
&dwOutBytes, // 输出数据长度
(LPOVERLAPPED)NULL); // 用同步I/O

return bResult;
}

// 将卷卸下
// 该操作使系统重新辨识磁盘,等效于重新插盘
BOOL DismountVolume(HANDLE hDisk)
{
DWORD dwOutBytes;
BOOL bResult;

// 用FSCTL_DISMOUNT_VOLUME卸卷
bResult = ::DeviceIoControl(hDisk, // 设备句柄
FSCTL_DISMOUNT_VOLUME, // 卸卷
NULL, 0, // 不需要输入数据
NULL, 0, // 不需要输出数据
&dwOutBytes, // 输出数据长度
(LPOVERLAPPED)NULL); // 用同步I/O

return bResult;
}

将软盘保存成镜像文件的步骤简单描述为:
1、创建空的镜像文件。
2、调用OpenDisk打开软盘。成功转3,失败转8。
3、调用LockVolume将卷锁定。成功转4,失败转7。
4、调用GetDiskGeometry获取参数。成功转5,失败转6。
5、将磁盘参数写入镜像文件作为文件头。调用ReadTracks按柱面读出数据,保存在镜像文件中。循环次数等于柱面数。
6、调用UnlockVolume将卷解锁。
7、调用CloseDisk关闭软盘。
8、关闭镜像文件。

将镜像文件载入软盘的步骤简单描述为:
1、打开镜像文件。
2、调用OpenDisk打开软盘。成功转3,失败转11。
3、调用LockVolume将卷锁定。成功转4,失败转10。
4、调用GetDiskGeometry获取参数。成功转5,失败转9。
5、从镜像文件中读出文件头,判断两个磁盘参数是否一致。不一致转6,否则转7。
6、调用LowLevelFormatTracks按柱面格式化软盘。循环次数等于柱面数。成功转7,失败转8。
7、从镜像文件中读出数据,并调用WriteTracks按柱面写入磁盘。循环次数等于柱面数。
8、调用DismountVolume将卷卸下。
9、调用UnlockVolume将卷解锁。
10、调用CloseDisk关闭软盘。
11、关闭镜像文件。

Q 我注意到,磁盘读写和格式化是按柱面进行的,有什么道理吗?

A 没有特别的原因,只是因为在这个例子中可以方便地显示处理进度。
有一点需要特别提及,按绝对地址读写磁盘数据时,“最小单位”是扇区,地址一定要与扇区对齐,长度也要等于扇区长度的整数倍。比如,每扇区512字节,那么起始地址和数据长度都应能被512整除才行。

Q 我忽然产生了一个伟大的想法,用绝对地址读写的方式使用磁盘,包括U盘啦,MO啦,而不是用现成的文件系统,那不是可以将数据保密了吗?

A 当然,只要你喜欢。可千万别在你的系统盘上做试验,否则......可别怪bhw98没有提醒过你喔!

Q 我知道怎么测试光驱的传输速度了,就用上面的方法,读出一定长度数据,除以所需时间,应该可以吧?

A 可以。但取光盘参数时要用IOCTL_STORAGE_GET_MEDIA_TYPES_EX,我们已经探讨过的。

Q 用IOCTL_DISK_GET_DRIVE_GEOMETRY或IOCTL_STORAGE_GET_MEDIA_TYPES_EX只能得到很少的磁盘参数,我想获得包括硬盘序列号在内的更加详细的信息,有什么办法呀?

A 确实,用你所说的I/O控制码,只能得到最基本的磁盘参数。获取磁盘出厂信息的I/O控制码,微软在VC/MFC环境中没有开放,在DDK中可以发现一些线索。早先,Lynn McGuire写了一个很出名的获取IDE硬盘详细信息的程序DiskID32,下面的例子是在其基础上经过增删和改进而成的。
本例中,我们要用到ATA/APAPI的IDENTIFY DEVICE指令。ATA/APAPI是国际组织T13起草和发布的IDE/EIDE/UDMA硬盘及其它可移动存储设备与主机接口的标准,至今已经到了ATA/APAPI-7版本。该接口标准规定了ATA/ATAPI设备的输入输出寄存器和指令集。欲了解更详细的ATA/ATAPI技术资料,可访问T13的站点。
用到的常量及数据结构有以下一些:

// IOCTL控制码
// #define DFP_SEND_DRIVE_COMMAND 0x0007c084
#define DFP_SEND_DRIVE_COMMAND CTL_CODE(IOCTL_DISK_BASE, 0x0021, METHOD_BUFFERED, FILE_READ_ACCESS | FILE_WRITE_ACCESS)
// #define DFP_RECEIVE_DRIVE_DATA 0x0007c088
#define DFP_RECEIVE_DRIVE_DATA CTL_CODE(IOCTL_DISK_BASE, 0x0022, METHOD_BUFFERED, FILE_READ_ACCESS | FILE_WRITE_ACCESS)

#define FILE_DEVICE_SCSI 0x0000001b
#define IOCTL_SCSI_MINIPORT_IDENTIFY ((FILE_DEVICE_SCSI << 16) + 0x0501)
#define IOCTL_SCSI_MINIPORT 0x0004D008 // see NTDDSCSI.H for definition

// ATA/ATAPI指令
#define IDE_ATA_IDENTIFY 0xEC // ATA的ID指令(IDENTIFY DEVICE)

// IDE命令寄存器
typedef struct _IDEREGS
{
BYTE bFeaturesReg; // 特征寄存器(用于SMART命令)
BYTE bSectorCountReg; // 扇区数目寄存器
BYTE bSectorNumberReg; // 开始扇区寄存器
BYTE bCylLowReg; // 开始柱面低字节寄存器
BYTE bCylHighReg; // 开始柱面高字节寄存器
BYTE bDriveHeadReg; // 驱动器/磁头寄存器
BYTE bCommandReg; // 指令寄存器
BYTE bReserved; // 保留
} IDEREGS, *PIDEREGS, *LPIDEREGS;

// 从驱动程序返回的状态
typedef struct _DRIVERSTATUS
{
BYTE bDriverError; // 错误码
BYTE bIDEStatus; // IDE状态寄存器
BYTE bReserved[2]; // 保留
DWORD dwReserved[2]; // 保留
} DRIVERSTATUS, *PDRIVERSTATUS, *LPDRIVERSTATUS;

// IDE设备IOCTL输入数据结构
typedef struct _SENDCMDINPARAMS
{
DWORD cBufferSize; // 缓冲区字节数
IDEREGS irDriveRegs; // IDE寄存器组
BYTE bDriveNumber; // 驱动器号
BYTE bReserved[3]; // 保留
DWORD dwReserved[4]; // 保留
BYTE bBuffer[1]; // 输入缓冲区(此处象征性地包含1字节)
} SENDCMDINPARAMS, *PSENDCMDINPARAMS, *LPSENDCMDINPARAMS;

// IDE设备IOCTL输出数据结构
typedef struct _SENDCMDOUTPARAMS
{
DWORD cBufferSize; // 缓冲区字节数
DRIVERSTATUS DriverStatus; // 驱动程序返回状态
BYTE bBuffer[1]; // 输入缓冲区(此处象征性地包含1字节)
} SENDCMDOUTPARAMS, *PSENDCMDOUTPARAMS, *LPSENDCMDOUTPARAMS;

// IDE的ID命令返回的数据
// 共512字节(256个WORD),这里仅定义了一些感兴趣的项(基本上依据ATA/ATAPI-4)
typedef struct _IDINFO
{
USHORT wGenConfig; // WORD 0: 基本信息字
USHORT wNumCyls; // WORD 1: 柱面数
USHORT wReserved2; // WORD 2: 保留
USHORT wNumHeads; // WORD 3: 磁头数
USHORT wReserved4; // WORD 4: 保留
USHORT wReserved5; // WORD 5: 保留
USHORT wNumSectorsPerTrack; // WORD 6: 每磁道扇区数
USHORT wVendorUnique[3]; // WORD 7-9: 厂家设定值
CHAR sSerialNumber[20]; // WORD 10-19:序列号
USHORT wBufferType; // WORD 20: 缓冲类型
USHORT wBufferSize; // WORD 21: 缓冲大小
USHORT wECCSize; // WORD 22: ECC校验大小
CHAR sFirmwareRev[8]; // WORD 23-26: 固件版本
CHAR sModelNumber[40]; // WORD 27-46: 内部型号
USHORT wMoreVendorUnique; // WORD 47: 厂家设定值
USHORT wReserved48; // WORD 48: 保留
struct {
USHORT reserved1:8;
USHORT DMA:1; // 1=支持DMA
USHORT LBA:1; // 1=支持LBA
USHORT DisIORDY:1; // 1=可不使用IORDY
USHORT IORDY:1; // 1=支持IORDY
USHORT SoftReset:1; // 1=需要ATA软启动
USHORT Overlap:1; // 1=支持重叠操作
USHORT Queue:1; // 1=支持命令队列
USHORT InlDMA:1; // 1=支持交叉存取DMA
} wCapabilities; // WORD 49: 一般能力
USHORT wReserved1; // WORD 50: 保留
USHORT wPIOTiming; // WORD 51: PIO时序
USHORT wDMATiming; // WORD 52: DMA时序
struct {
USHORT CHSNumber:1; // 1=WORD 54-58有效
USHORT CycleNumber:1; // 1=WORD 64-70有效
USHORT UnltraDMA:1; // 1=WORD 88有效
USHORT reserved:13;
} wFieldValidity; // WORD 53: 后续字段有效性标志
USHORT wNumCurCyls; // WORD 54: CHS可寻址的柱面数
USHORT wNumCurHeads; // WORD 55: CHS可寻址的磁头数
USHORT wNumCurSectorsPerTrack; // WORD 56: CHS可寻址每磁道扇区数
USHORT wCurSectorsLow; // WORD 57: CHS可寻址的扇区数低位字
USHORT wCurSectorsHigh; // WORD 58: CHS可寻址的扇区数高位字
struct {
USHORT CurNumber:8; // 当前一次性可读写扇区数
USHORT Multi:1; // 1=已选择多扇区读写
USHORT reserved1:7;
} wMultSectorStuff; // WORD 59: 多扇区读写设定
ULONG dwTotalSectors; // WORD 60-61: LBA可寻址的扇区数
USHORT wSingleWordDMA; // WORD 62: 单字节DMA支持能力
struct {
USHORT Mode0:1; // 1=支持模式0 (4.17Mb/s)
USHORT Mode1:1; // 1=支持模式1 (13.3Mb/s)
USHORT Mode2:1; // 1=支持模式2 (16.7Mb/s)
USHORT Reserved1:5;
USHORT Mode0Sel:1; // 1=已选择模式0
USHORT Mode1Sel:1; // 1=已选择模式1
USHORT Mode2Sel:1; // 1=已选择模式2
USHORT Reserved2:5;
} wMultiWordDMA; // WORD 63: 多字节DMA支持能力
struct {
USHORT AdvPOIModes:8; // 支持高级POI模式数
USHORT reserved:8;
} wPIOCapacity; // WORD 64: 高级PIO支持能力
USHORT wMinMultiWordDMACycle; // WORD 65: 多字节DMA传输周期的最小值
USHORT wRecMultiWordDMACycle; // WORD 66: 多字节DMA传输周期的建议值
USHORT wMinPIONoFlowCycle; // WORD 67: 无流控制时PIO传输周期的最小值
USHORT wMinPOIFlowCycle; // WORD 68: 有流控制时PIO传输周期的最小值
USHORT wReserved69[11]; // WORD 69-79: 保留
struct {
USHORT Reserved1:1;
USHORT ATA1:1; // 1=支持ATA-1
USHORT ATA2:1; // 1=支持ATA-2
USHORT ATA3:1; // 1=支持ATA-3
USHORT ATA4:1; // 1=支持ATA/ATAPI-4
USHORT ATA5:1; // 1=支持ATA/ATAPI-5
USHORT ATA6:1; // 1=支持ATA/ATAPI-6
USHORT ATA7:1; // 1=支持ATA/ATAPI-7
USHORT ATA8:1; // 1=支持ATA/ATAPI-8
USHORT ATA9:1; // 1=支持ATA/ATAPI-9
USHORT ATA10:1; // 1=支持ATA/ATAPI-10
USHORT ATA11:1; // 1=支持ATA/ATAPI-11
USHORT ATA12:1; // 1=支持ATA/ATAPI-12
USHORT ATA13:1; // 1=支持ATA/ATAPI-13
USHORT ATA14:1; // 1=支持ATA/ATAPI-14
USHORT Reserved2:1;
} wMajorVersion; // WORD 80: 主版本
USHORT wMinorVersion; // WORD 81: 副版本
USHORT wReserved82[6]; // WORD 82-87: 保留
struct {
USHORT Mode0:1; // 1=支持模式0 (16.7Mb/s)
USHORT Mode1:1; // 1=支持模式1 (25Mb/s)
USHORT Mode2:1; // 1=支持模式2 (33Mb/s)
USHORT Mode3:1; // 1=支持模式3 (44Mb/s)
USHORT Mode4:1; // 1=支持模式4 (66Mb/s)
USHORT Mode5:1; // 1=支持模式5 (100Mb/s)
USHORT Mode6:1; // 1=支持模式6 (133Mb/s)
USHORT Mode7:1; // 1=支持模式7 (166Mb/s) ???
USHORT Mode0Sel:1; // 1=已选择模式0
USHORT Mode1Sel:1; // 1=已选择模式1
USHORT Mode2Sel:1; // 1=已选择模式2
USHORT Mode3Sel:1; // 1=已选择模式3
USHORT Mode4Sel:1; // 1=已选择模式4
USHORT Mode5Sel:1; // 1=已选择模式5
USHORT Mode6Sel:1; // 1=已选择模式6
USHORT Mode7Sel:1; // 1=已选择模式7
} wUltraDMA; // WORD 88: Ultra DMA支持能力
USHORT wReserved89[167]; // WORD 89-255
} IDINFO, *PIDINFO;

// SCSI驱动所需的输入输出共用的结构
typedef struct _SRB_IO_CONTROL
{
ULONG HeaderLength; // 头长度
UCHAR Signature[8]; // 特征名称
ULONG Timeout; // 超时时间
ULONG ControlCode; // 控制码
ULONG ReturnCode; // 返回码
ULONG Length; // 缓冲区长度
} SRB_IO_CONTROL, *PSRB_IO_CONTROL;

需要引起注意的是IDINFO第57-58 WORD (CHS可寻址的扇区数),因为不满足32位对齐的要求,不可定义为一个ULONG字段。Lynn McGuire的程序里正是由于定义为一个ULONG字段,导致该结构不可用。

以下是核心代码

// 打开设备
// filename: 设备的“文件名”
HANDLE OpenDevice(LPCTSTR filename)
{
HANDLE hDevice;

// 打开设备
hDevice= ::CreateFile(filename, // 文件名
GENERIC_READ | GENERIC_WRITE, // 读写方式
FILE_SHARE_READ | FILE_SHARE_WRITE, // 共享方式
NULL, // 默认的安全描述符
OPEN_EXISTING, // 创建方式
0, // 不需设置文件属性
NULL); // 不需参照模板文件

return hDevice;
}

// 向驱动发“IDENTIFY DEVICE”命令,获得设备信息
// hDevice: 设备句柄
// pIdInfo: 设备信息结构指针
BOOL IdentifyDevice(HANDLE hDevice, PIDINFO pIdInfo)
{
PSENDCMDINPARAMS pSCIP; // 输入数据结构指针
PSENDCMDOUTPARAMS pSCOP; // 输出数据结构指针
DWORD dwOutBytes; // IOCTL输出数据长度
BOOL bResult; // IOCTL返回值

// 申请输入/输出数据结构空间
pSCIP = (PSENDCMDINPARAMS)::GlobalAlloc(LMEM_ZEROINIT, sizeof(SENDCMDINPARAMS)-1);
pSCOP = (PSENDCMDOUTPARAMS)::GlobalAlloc(LMEM_ZEROINIT, sizeof(SENDCMDOUTPARAMS)+sizeof(IDINFO)-1);

// 指定ATA/ATAPI命令的寄存器值
// pSCIP->irDriveRegs.bFeaturesReg = 0;
// pSCIP->irDriveRegs.bSectorCountReg = 0;
// pSCIP->irDriveRegs.bSectorNumberReg = 0;
// pSCIP->irDriveRegs.bCylLowReg = 0;
// pSCIP->irDriveRegs.bCylHighReg = 0;
// pSCIP->irDriveRegs.bDriveHeadReg = 0;
pSCIP->irDriveRegs.bCommandReg = IDE_ATA_IDENTIFY;

// 指定输入/输出数据缓冲区大小
pSCIP->cBufferSize = 0;
pSCOP->cBufferSize = sizeof(IDINFO);

// IDENTIFY DEVICE
bResult = ::DeviceIoControl(hDevice, // 设备句柄
DFP_RECEIVE_DRIVE_DATA, // 指定IOCTL
pSCIP, sizeof(SENDCMDINPARAMS) - 1, // 输入数据缓冲区
pSCOP, sizeof(SENDCMDOUTPARAMS) + sizeof(IDINFO) - 1, // 输出数据缓冲区
&dwOutBytes, // 输出数据长度
(LPOVERLAPPED)NULL); // 用同步I/O

// 复制设备参数结构
::memcpy(pIdInfo, pSCOP->bBuffer, sizeof(IDINFO));

// 释放输入/输出数据空间
::GlobalFree(pSCOP);
::GlobalFree(pSCIP);

return bResult;
}

// 向SCSI MINI-PORT驱动发“IDENTIFY DEVICE”命令,获得设备信息
// hDevice: 设备句柄
// pIdInfo: 设备信息结构指针
BOOL IdentifyDeviceAsScsi(HANDLE hDevice, int nDrive, PIDINFO pIdInfo)
{
PSENDCMDINPARAMS pSCIP; // 输入数据结构指针
PSENDCMDOUTPARAMS pSCOP; // 输出数据结构指针
PSRB_IO_CONTROL pSRBIO; // SCSI输入输出数据结构指针
DWORD dwOutBytes; // IOCTL输出数据长度
BOOL bResult; // IOCTL返回值

// 申请输入/输出数据结构空间
pSRBIO = (PSRB_IO_CONTROL)::GlobalAlloc(LMEM_ZEROINIT, sizeof(SRB_IO_CONTROL)+sizeof(SENDCMDOUTPARAMS)+sizeof(IDINFO)-1);
pSCIP = (PSENDCMDINPARAMS)((char *)pSRBIO+sizeof(SRB_IO_CONTROL));
pSCOP = (PSENDCMDOUTPARAMS)((char *)pSRBIO+sizeof(SRB_IO_CONTROL));

// 填充输入/输出数据
pSRBIO->HeaderLength = sizeof(SRB_IO_CONTROL);
pSRBIO->Timeout = 10000;
pSRBIO->Length = sizeof(SENDCMDOUTPARAMS)+sizeof(IDINFO)-1;
pSRBIO->ControlCode = IOCTL_SCSI_MINIPORT_IDENTIFY;
::strncpy ((char *)pSRBIO->Signature, "SCSIDISK", 8);

// 指定ATA/ATAPI命令的寄存器值
// pSCIP->irDriveRegs.bFeaturesReg = 0;
// pSCIP->irDriveRegs.bSectorCountReg = 0;
// pSCIP->irDriveRegs.bSectorNumberReg = 0;
// pSCIP->irDriveRegs.bCylLowReg = 0;
// pSCIP->irDriveRegs.bCylHighReg = 0;
// pSCIP->irDriveRegs.bDriveHeadReg = 0;
pSCIP->irDriveRegs.bCommandReg = IDE_ATA_IDENTIFY;
pSCIP->bDriveNumber = nDrive;

// IDENTIFY DEVICE
bResult = ::DeviceIoControl(hDevice, // 设备句柄
IOCTL_SCSI_MINIPORT, // 指定IOCTL
pSRBIO, sizeof(SRB_IO_CONTROL) +sizeof(SENDCMDINPARAMS) - 1, // 输入数据缓冲区
pSRBIO, sizeof(SRB_IO_CONTROL) +sizeof(SENDCMDOUTPARAMS) + sizeof(IDINFO) - 1, // 输出数据缓冲区
&dwOutBytes, // 输出数据长度
(LPOVERLAPPED)NULL); // 用同步I/O

// 复制设备参数结构
::memcpy(pIdInfo, pSCOP->bBuffer, sizeof(IDINFO));

// 释放输入/输出数据空间
::GlobalFree(pSRBIO);

return bResult;
}

// 将串中的字符两两颠倒
// 原因是ATA/ATAPI中的WORD,与Windows采用的字节顺序相反
// 驱动程序中已经将收到的数据全部反过来,我们来个负负得正
void AdjustString(char* str, int len)
{
char ch;
int i;

// 两两颠倒
for(i=0;i<len;i+=2)
{
ch = str[i];
str[i] = str[i+1];
str[i+1] = ch;
}

// 若是右对齐的,调整为左对齐 (去掉左边的空格)
i=0;
while(i<len && str[i]==' ') i++;

::memmove(str, &str[i], len-i);

// 去掉右边的空格
i = len - 1;
while(i>=0 && str[i]==' ')
{
str[i] = '/0';
i--;
}
}

// 读取IDE硬盘的设备信息,必须有足够权限
// nDrive: 驱动器号(0=第一个硬盘,1=0=第二个硬盘,......)
// pIdInfo: 设备信息结构指针
BOOL GetPhysicalDriveInfoInNT(int nDrive, PIDINFO pIdInfo)
{
HANDLE hDevice; // 设备句柄
BOOL bResult; // 返回结果
char szFileName[20]; // 文件名

::sprintf(szFileName,"////.//PhysicalDrive%d", nDrive);

hDevice = ::OpenDevice(szFileName);

if(hDevice == INVALID_HANDLE_VALUE)
{
return FALSE;
}

// IDENTIFY DEVICE
bResult = ::IdentifyDevice(hDevice, pIdInfo);

if(bResult)
{
// 调整字符串
::AdjustString(pIdInfo->sSerialNumber, 20);
::AdjustString(pIdInfo->sModelNumber, 40);
::AdjustString(pIdInfo->sFirmwareRev, 8);
}

::CloseHandle (hDevice);

return bResult;
}

// 用SCSI驱动读取IDE硬盘的设备信息,不受权限制约
// nDrive: 驱动器号(0=Primary Master, 1=Promary Slave, 2=Secondary master, 3=Secondary slave)
// pIdInfo: 设备信息结构指针
BOOL GetIdeDriveAsScsiInfoInNT(int nDrive, PIDINFO pIdInfo)
{
HANDLE hDevice; // 设备句柄
BOOL bResult; // 返回结果
char szFileName[20]; // 文件名

::sprintf(szFileName,"////.//Scsi%d:", nDrive/2);

hDevice = ::OpenDevice(szFileName);

if(hDevice == INVALID_HANDLE_VALUE)
{
return FALSE;
}

// IDENTIFY DEVICE
bResult = ::IdentifyDeviceAsScsi(hDevice, nDrive%2, pIdInfo);

// 检查是不是空串
if(pIdInfo->sModelNumber[0]=='/0')
{
bResult = FALSE;
}

if(bResult)
{
// 调整字符串
::AdjustString(pIdInfo->sSerialNumber, 20);
::AdjustString(pIdInfo->sModelNumber, 40);
::AdjustString(pIdInfo->sFirmwareRev, 8);
}

return bResult;
}

Q 我注意到ATA/ATAPI里,以及DiskID32里,有一个“IDENTIFY PACKET DEVICE”指令,与“IDENTIFY DEVICE”有什么区别?

A IDENTIFY DEVICE专门用于固定硬盘,而IDENTIFY PACKET DEVICE用于可移动存储设备如CDROM、CF、MO、ZIP、TAPE等。因为驱动程序的原因,实际上用本例的方法,不管是IDENTIFY DEVICE也好,IDENTIFY PACKET DEVICE也好,获取可移动存储设备的详细信息,一般是做不到的。而且除了IDE硬盘,对SCSI、USB等接口的硬盘也不起作用。除非厂商提供的驱动支持这样的功能。

Q ATA/ATAPI有很多指令,如READ SECTORS, WRITE SECTORS, SECURITY, SLEEP, STANDBY等,利用上述方法,是否可进行相应操作?

A 应该没问题。但切记,要慎重慎重再慎重!

Q 关于权限问题,请解释一下好吗?

A 在NT/2000/XP下,administrator可以管理设备,上述两种访问驱动的方法都行。但在user身份下,或者登录到域后,用户无法访问PhysicalDrive驱动的核心层,但SCSI MINI-PORT驱动却可以。目前是可以,不知道Windows以后的版本是否支持。因为这肯定是一个安全隐患。
另外,我们着重讨论NT/2000/XP中DeviceIoControl的应用,如果需要在98/ME中得到包括硬盘序列号在内的更加详细的信息,请参考DiskID32。

Q 前几次我们讨论的都是设备名比较清楚的情况,有了设备名(路径),就可以直接调用CreateFile打开设备,进行它所支持的I/O操作了。如果事先并不能确切知道设备名,如何去访问设备呢?

A 访问设备必须用设备句柄,而得到设备句柄必须知道设备路径,这个套路以你我之力是改变不了的。每个设备都有它所属类型的GUID,我们顺着这个GUID就能获得设备路径。
GUID是同类或同种设备的全球唯一识别码,它是一个128 bit(16字节)的整形数,真实面目为

typedef struct _GUID
{
unsigned long Data1;
unsigned short Data2;
unsigned short Data3;
unsigned char Data4[8];
} GUID, *PGUID;

例如,Disk类的GUID为“53f56307-b6bf-11d0-94f2-00a0c91efb8b”,在我们的程序里可以定义为
const GUID DiskClassGuid = {0x53f56307L, 0xb6bf, 0x11d0, {0x94, 0xf2, 0x00, 0xa0, 0xc9, 0x1e, 0xfb, 0x8b)};
或者用一个宏来定义
DEFINE_GUID(DiskClassGuid, 0x53f56307L, 0xb6bf, 0x11d0, 0x94, 0xf2, 0x00, 0xa0, 0xc9, 0x1e, 0xfb, 0x8b);

通过GUID找出设备路径,需要用到一组设备管理的API函数
SetupDiGetClassDevs, SetupDiEnumDeviceInterfaces, SetupDiGetInterfaceDeviceDetail, SetupDiDestroyDeviceInfoList,
以及结构SP_DEVICE_INTERFACE_DATA, SP_DEVICE_INTERFACE_DETAIL_DATA。
有关信息请查阅MSDN,这里就不详细介绍了。

实现GUID到设备路径的代码如下:

// SetupDiGetInterfaceDeviceDetail所需要的输出长度,定义足够大
#define INTERFACE_DETAIL_SIZE (1024)

// 根据GUID获得设备路径
// lpGuid: GUID指针
// pszDevicePath: 设备路径指针的指针
// 返回: 成功得到的设备路径个数,可能不止1个
int GetDevicePath(LPGUID lpGuid, LPTSTR* pszDevicePath)
{
HDEVINFO hDevInfoSet;
SP_DEVICE_INTERFACE_DATA ifdata;
PSP_DEVICE_INTERFACE_DETAIL_DATA pDetail;
int nCount;
BOOL bResult;

// 取得一个该GUID相关的设备信息集句柄
hDevInfoSet = ::SetupDiGetClassDevs(lpGuid, // class GUID
NULL, // 无关键字
NULL, // 不指定父窗口句柄
DIGCF_PRESENT | DIGCF_DEVICEINTERFACE); // 目前存在的设备

// 失败...
if(hDevInfoSet == INVALID_HANDLE_VALUE)
{
return 0;
}

// 申请设备接口数据空间
pDetail = (PSP_DEVICE_INTERFACE_DETAIL_DATA)::GlobalAlloc(LMEM_ZEROINIT, INTERFACE_DETAIL_SIZE);

pDetail->cbSize = sizeof(SP_DEVICE_INTERFACE_DETAIL_DATA);

nCount = 0;
bResult = TRUE;

// 设备序号=0,1,2... 逐一测试设备接口,到失败为止
while (bResult)
{
ifdata.cbSize=sizeof(ifdata);

// 枚举符合该GUID的设备接口
bResult = ::SetupDiEnumDeviceInterfaces(
hDevInfoSet, // 设备信息集句柄
NULL, // 不需额外的设备描述
lpGuid, // GUID
(ULONG)nCount, // 设备信息集里的设备序号
&ifdata); // 设备接口信息

if(bResult)
{
// 取得该设备接口的细节(设备路径)
bResult = SetupDiGetInterfaceDeviceDetail(
hDevInfoSet, // 设备信息集句柄
&ifdata, // 设备接口信息
pDetail, // 设备接口细节(设备路径)
INTERFACE_DETAIL_SIZE, // 输出缓冲区大小
NULL, // 不需计算输出缓冲区大小(直接用设定值)
NULL); // 不需额外的设备描述

if(bResult)
{
// 复制设备路径到输出缓冲区
::strcpy(pszDevicePath[nCount], pDetail->DevicePath);

// 调整计数值
nCount++;
}
}
}

// 释放设备接口数据空间
::GlobalFree(pDetail);

// 关闭设备信息集句柄
::SetupDiDestroyDeviceInfoList(hDevInfoSet);

return nCount;
}

调用GetDevicePath函数时要注意,pszDevicePath是个指向字符串指针的指针,例如可以这样

int i;
char* szDevicePath[MAX_DEVICE]; // 设备路径

// 分配需要的空间
for(i=0; i<MAX_DEVICE; i++) szDevicePath[i] = new char[256];

// 取设备路径
nDevice = ::GetDevicePath((LPGUID)&DiskClassGuid, szDevicePath);

// 逐一获取设备信息
for(i=0; i<nDevice; i++)
{
// 打开设备
hDevice = ::OpenDevice(szDevicePath[i]);

if(hDevice != INVALID_HANDLE_VALUE)
{
... ... // I/O操作

::CloseHandle(hDevice);
}
}

// 释放空间
for(i=0;i<MAX_DEVICE;i++) delete []szDevicePath[i];

本例的Project中除了要包含winioctl.h外,还要包含initguid.h,setupapi.h,以及连接setupapi.lib。

Q 得到设备路径后,就可以到下一步,用CreateFile打开设备,然后用DeviceIoControl进行读写了吧?

A 是的。尽管该设备路径与以前我们接触的那些不太一样。本是“//./PhysicalDrive0”,现在鸟枪换炮,变成了类似这样的一副尊容:
“//?/ide#diskmaxtor_2f040j0__________________________vam51jj0#3146563447534558202020202020202020202020#{53f56307-b6bf-11d0-94f2-00a0c91efb8b}”。
其实这个设备名在注册表的某处可以找到,例如在Win2000中这个名字位于
HKEY_LOCAL_MACHINE/System/CurrentControlSet/Services/Disk/Enum/0,
只不过“#”换成了“/”。分析一下这样的设备路径,你会发现很有趣的东西,它们是由接口类型、产品型号、固件版本、序列号、计算机名、GUID等信息组合而成的。当然,它是没有规范的,不能指望从这里面得到你希望知道的东西。
用CreateFile打开设备后,对于存储设备,IOCTL_DISK_GET_DRIVE_GEOMETRY,IOCTL_STORAGE_GET_MEDIA_TYPES_EX等I/O控制码照常使用。
今天我们讨论一个新的控制码:IOCTL_STORAGE_QUERY_PROPERTY,获取设备属性信息,希望得到系统中所安装的各种固定的和可移动的硬盘、优盘和CD/DVD-ROM/R/W的接口类型、序列号、产品ID等信息。

// IOCTL控制码
#define IOCTL_STORAGE_QUERY_PROPERTY CTL_CODE(IOCTL_STORAGE_BASE, 0x0500, METHOD_BUFFERED, FILE_ANY_ACCESS)

// 存储设备的总线类型
typedef enum _STORAGE_BUS_TYPE {
BusTypeUnknown = 0x00,
BusTypeScsi,
BusTypeAtapi,
BusTypeAta,
BusType1394,
BusTypeSsa,
BusTypeFibre,
BusTypeUsb,
BusTypeRAID,
BusTypeMaxReserved = 0x7F
} STORAGE_BUS_TYPE, *PSTORAGE_BUS_TYPE;

// 查询存储设备属性的类型
typedef enum _STORAGE_QUERY_TYPE {
PropertyStandardQuery = 0, // 读取描述
PropertyExistsQuery, // 测试是否支持
PropertyMaskQuery, // 读取指定的描述
PropertyQueryMaxDefined // 验证数据
} STORAGE_QUERY_TYPE, *PSTORAGE_QUERY_TYPE;

// 查询存储设备还是适配器属性
typedef enum _STORAGE_PROPERTY_ID {
StorageDeviceProperty = 0, // 查询设备属性
StorageAdapterProperty // 查询适配器属性
} STORAGE_PROPERTY_ID, *PSTORAGE_PROPERTY_ID;

// 查询属性输入的数据结构
typedef struct _STORAGE_PROPERTY_QUERY {
STORAGE_PROPERTY_ID PropertyId; // 设备/适配器
STORAGE_QUERY_TYPE QueryType; // 查询类型
UCHAR AdditionalParameters[1]; // 额外的数据(仅定义了象征性的1个字节)
} STORAGE_PROPERTY_QUERY, *PSTORAGE_PROPERTY_QUERY;

// 查询属性输出的数据结构
typedef struct _STORAGE_DEVICE_DESCRIPTOR {
ULONG Version; // 版本
ULONG Size; // 结构大小
UCHAR DeviceType; // 设备类型
UCHAR DeviceTypeModifier; // SCSI-2额外的设备类型
BOOLEAN RemovableMedia; // 是否可移动
BOOLEAN CommandQueueing; // 是否支持命令队列
ULONG VendorIdOffset; // 厂家设定值的偏移
ULONG ProductIdOffset; // 产品ID的偏移
ULONG ProductRevisionOffset; // 产品版本的偏移
ULONG SerialNumberOffset; // 序列号的偏移
STORAGE_BUS_TYPE BusType; // 总线类型
ULONG RawPropertiesLength; // 额外的属性数据长度
UCHAR RawDeviceProperties[1]; // 额外的属性数据(仅定义了象征性的1个字节)
} STORAGE_DEVICE_DESCRIPTOR, *PSTORAGE_DEVICE_DESCRIPTOR;

// 取设备属性信息
// hDevice -- 设备句柄
// pDevDesc -- 输出的设备描述和属性信息缓冲区指针(包含连接在一起的两部分)
BOOL GetDriveProperty(HANDLE hDevice, PSTORAGE_DEVICE_DESCRIPTOR pDevDesc)
{
STORAGE_PROPERTY_QUERY Query; // 查询输入参数
DWORD dwOutBytes; // IOCTL输出数据长度
BOOL bResult; // IOCTL返回值

// 指定查询方式
Query.PropertyId = StorageDeviceProperty;
Query.QueryType = PropertyStandardQuery;

// 用IOCTL_STORAGE_QUERY_PROPERTY取设备属性信息
bResult = ::DeviceIoControl(hDevice, // 设备句柄
IOCTL_STORAGE_QUERY_PROPERTY, // 取设备属性信息
&Query, sizeof(STORAGE_PROPERTY_QUERY), // 输入数据缓冲区
pDevDesc, pDevDesc->Size, // 输出数据缓冲区
&dwOutBytes, // 输出数据长度
(LPOVERLAPPED)NULL); // 用同步I/O

return bResult;
}

Q 我用这个方法从IOCTL_STORAGE_QUERY_PROPERTY返回的数据中,没有得到CDROM和USB接口的外置硬盘的序列号、产品ID等信息。但从设备路径上看,明明是有这些信息的,为什么它没有填充到STORAGE_DEVICE_DESCRIPTOR中呢?再就是为什么硬盘序列号本是“D22P7KHE ”,为什么它填充的是“3146563447534558202020202020202020202020”这种形式呢?

A 对这两个问题我也是心存疑惑,但又不敢妄加猜测,正琢磨着向微软请教呢。

Q 在NT/2000/XP中,如何读取CMOS数据?

Q 在NT/2000/XP中,如何控制speaker发声?

Q 在NT/2000/XP中,如何直接访问物理端口?

A 看似小小问题,难倒多少好汉!
NT/2000/XP从安全性、可靠性、稳定性上考虑,应用程序和操作系统是分开的,操作系统代码运行在核心态,有权访问系统数据和硬件,能执行特权指令;应用程序运行在用户态,能够使用的接口和访问系统数据的权限都受到严格限制。当用户程序调用系统服务时,处理器捕获该调用,然后把调用的线程切换到核心态。当系统服务完成后,操作系统将线程描述表切换回用户态,调用者继续运行。
想在用户态应用程序中实现I/O读写,直接存取硬件,可以通过编写驱动程序,实现CreateFile、CloseHandle、 DeviceIOControl、ReadFile、WriteFile等功能。从Windows 2000开始,引入WDM核心态驱动程序的概念。
下面是我写的一个非常简单的驱动程序,可实现字节型端口I/O。

#include <ntddk.h>

// 设备类型定义
// 0-32767被Microsoft占用,用户自定义可用32768-65535
#define FILE_DEVICE_MYPORT 0x0000f000

// I/O控制码定义
// 0-2047被Microsoft占用,用户自定义可用2048-4095
#define MYPORT_IOCTL_BASE 0xf00

#define IOCTL_MYPORT_READ_BYTE CTL_CODE(FILE_DEVICE_MYPORT, MYPORT_IOCTL_BASE, METHOD_BUFFERED, FILE_ANY_ACCESS)
#define IOCTL_MYPORT_WRITE_BYTE CTL_CODE(FILE_DEVICE_MYPORT, MYPORT_IOCTL_BASE+1, METHOD_BUFFERED, FILE_ANY_ACCESS)

// IOPM是65536个端口的位屏蔽矩阵,包含8192字节(8192 x 8 = 65536)
// 0 bit: 允许应用程序访问对应端口
// 1 bit: 禁止应用程序访问对应端口

#define IOPM_SIZE 8192

typedef UCHAR IOPM[IOPM_SIZE];

IOPM *pIOPM = NULL;

// 设备名(要求以UNICODE表示)
const WCHAR NameBuffer[] = L"//Device//MyPort";
const WCHAR DOSNameBuffer[] = L"//DosDevices//MyPort";

// 这是两个在ntoskrnl.exe中的未见文档的服务例程
// 没有现成的已经说明它们原型的头文件,我们自己声明
void Ke386SetIoAccessMap(int, IOPM *);
void Ke386IoSetAccessProcess(PEPROCESS, int);

// 函数原型预先说明
NTSTATUS MyPortDispatch(IN PDEVICE_OBJECT DeviceObject, IN PIRP Irp);
void MyPortUnload(IN PDRIVER_OBJECT DriverObject);

// 驱动程序入口,由系统自动调用,就像WIN32应用程序的WinMain
NTSTATUS DriverEntry(IN PDRIVER_OBJECT DriverObject, IN PUNICODE_STRING RegistryPath)
{
PDEVICE_OBJECT deviceObject;
NTSTATUS status;
UNICODE_STRING uniNameString, uniDOSString;

// 为IOPM分配内存
pIOPM = MmAllocateNonCachedMemory(sizeof(IOPM));
if(pIOPM == 0)
{
return STATUS_INSUFFICIENT_RESOURCES;
}

// IOPM全部初始化为0(允许访问所有端口)
RtlZeroMemory(pIOPM, sizeof(IOPM));

// 将IOPM加载到当前进程
Ke386IoSetAccessProcess(PsGetCurrentProcess(), 1);
Ke386SetIoAccessMap(1, pIOPM);

// 指定驱动名字
RtlInitUnicodeString(&uniNameString, NameBuffer);
RtlInitUnicodeString(&uniDOSString, DOSNameBuffer);

// 创建设备
status = IoCreateDevice(DriverObject, 0,
&uniNameString,
FILE_DEVICE_MYPORT,
0, FALSE, &deviceObject);

if(!NT_SUCCESS(status))
{
return status;
}

// 创建WIN32应用程序需要的符号连接
status = IoCreateSymbolicLink (&uniDOSString, &uniNameString);

if (!NT_SUCCESS(status))
{
return status;
}

// 指定驱动程序有关操作的模块入口(函数指针)
// 涉及以下两个模块:MyPortDispatch和MyPortUnload
DriverObject->MajorFunction[IRP_MJ_CREATE] =
DriverObject->MajorFunction[IRP_MJ_CLOSE] =
DriverObject->MajorFunction[IRP_MJ_DEVICE_CONTROL] = MyPortDispatch;
DriverObject->DriverUnload = MyPortUnload;

return STATUS_SUCCESS;
}

// IRP处理模块
NTSTATUS MyPortDispatch(IN PDEVICE_OBJECT DeviceObject, IN PIRP Irp)
{
PIO_STACK_LOCATION IrpStack;
ULONG dwInputBufferLength;
ULONG dwOutputBufferLength;
ULONG dwIoControlCode;
PULONG pvIOBuffer;
NTSTATUS ntStatus;

// 填充几个默认值
Irp->IoStatus.Status = STATUS_SUCCESS; // 返回状态
Irp->IoStatus.Information = 0; // 输出长度

IrpStack = IoGetCurrentIrpStackLocation(Irp);

// Get the pointer to the input/output buffer and it's length

// 输入输出共用的缓冲区
// 因为我们在IOCTL中指定了METHOD_BUFFERED,
pvIOBuffer = Irp->AssociatedIrp.SystemBuffer;

switch (IrpStack->MajorFunction)
{
case IRP_MJ_CREATE: // 与WIN32应用程序中的CreateFile对应
break;

case IRP_MJ_CLOSE: // 与WIN32应用程序中的CloseHandle对应
break;

case IRP_MJ_DEVICE_CONTROL: // 与WIN32应用程序中的DeviceIoControl对应
dwIoControlCode = IrpStack->Parameters.DeviceIoControl.IoControlCode;
switch (dwIoControlCode)
{
// 我们约定,缓冲区共两个DWORD,第一个DWORD为端口,第二个DWORD为数据
// 一般做法是专门定义一个结构,此处简单化处理了
case IOCTL_MYPORT_READ_BYTE: // 从端口读字节
pvIOBuffer[1] = _inp(pvIOBuffer[0]);
Irp->IoStatus.Information = 8; // 输出长度为8
break;
case IOCTL_MYPORT_WRITE_BYTE: // 写字节到端口
_outp(pvIOBuffer[0], pvIOBuffer[1]);
break;
default: // 不支持的IOCTL
Irp->IoStatus.Status = STATUS_INVALID_PARAMETER;
}
}

ntStatus = Irp->IoStatus.Status;

IoCompleteRequest (Irp, IO_NO_INCREMENT);

return ntStatus;
}

// 删除驱动
void MyPortUnload(IN PDRIVER_OBJECT DriverObject)
{
UNICODE_STRING uniDOSString;

if(pIOPM)
{
// 释放IOPM占用的空间
MmFreeNonCachedMemory(pIOPM, sizeof(IOPM));
}

RtlInitUnicodeString(&uniDOSString, DOSNameBuffer);

// 删除符号连接和设备
IoDeleteSymbolicLink (&uniDOSString);
IoDeleteDevice(DriverObject->DeviceObject);
}

下面给出实现设备驱动程序的动态加载的源码。动态加载的好处是,你不用做任何添加新硬件的操作,也不用编辑注册表,更不用重新启动计算机。

// 安装驱动并启动服务
// lpszDriverPath: 驱动程序路径
// lpszServiceName: 服务名
BOOL StartDriver(LPCTSTR lpszDriverPath, LPCTSTR lpszServiceName)
{
SC_HANDLE hSCManager; // 服务控制管理器句柄
SC_HANDLE hService; // 服务句柄
BOOL bResult = FALSE; // 返回值

// 打开服务控制管理
hSCManager = OpenSCManager(NULL, NULL, SC_MANAGER_ALL_ACCESS);

// 打开失败...
if(hSCManager)
{
// 创建服务
hService = CreateService(hSCManager,
lpszServiceName,
lpszServiceName,
SERVICE_ALL_ACCESS,
SERVICE_KERNEL_DRIVER,
SERVICE_DEMAND_START,
SERVICE_ERROR_NORMAL,
lpszDriverPath,
NULL,
NULL,
NULL,
NULL,
NULL);

if(hService)
{
// 启动服务
bResult = StartService(hService, 0, NULL);

// 关闭服务句柄
CloseServiceHandle(hService);
}

// 关闭服务控制管理器句柄
CloseServiceHandle(hSCManager);
}

return bResult;
}

// 停止服务并卸下驱动
// lpszServiceName: 服务名
BOOL StopDriver(LPCTSTR lpszServiceName)
{
SC_HANDLE hSCManager; // 服务控制管理器句柄
SC_HANDLE hService; // 服务句柄
BOOL bResult = FALSE; // 返回值
SERVICE_STATUS ServiceStatus;

// 打开服务控制管理
hSCManager = OpenSCManager(NULL, NULL, SC_MANAGER_ALL_ACCESS);

// 打开失败...
if(hSCManager)
{
// 打开服务
hService = OpenService(hSCManager, lpszServiceName, SERVICE_ALL_ACCESS);

if(hService)
{
// 停止服务
bResult = ControlService(hService, SERVICE_CONTROL_STOP, &ServiceStatus);

// 删除服务
bResult = bResult && DeleteService(hService);

// 关闭服务句柄
CloseServiceHandle(hService);
}

// 关闭服务控制管理器句柄
CloseServiceHandle(hSCManager);
}

return bResult;
}

应用程序实现端口I/O的接口如下:

// 全局的设备句柄
HANDLE hMyPort;

// 打开设备
// lpszDevicePath: 设备的路径
HANDLE OpenDevice(LPCTSTR lpszDevicePath)
{
HANDLE hDevice;

// 打开设备
hDevice= ::CreateFile(lpszDevicePath, // 设备路径
GENERIC_READ | GENERIC_WRITE, // 读写方式
FILE_SHARE_READ | FILE_SHARE_WRITE, // 共享方式
NULL, // 默认的安全描述符
OPEN_EXISTING, // 创建方式
0, // 不需设置文件属性
NULL); // 不需参照模板文件

return hDevice;
}

// 打开端口驱动
BOOL OpenMyPort()
{
BOOL bResult;

// 设备名为"MyPort",驱动程序位于Windows的"system32/drivers"目录中
bResult = StartDriver("system32//drivers//MyPort.sys", "MyPort");

// 设备路径为"//./MyPort"
if(bResult) hMyPort=OpenDevice("////.//MyPort");

return (bResult && hMyPort!=INVALID_HANDLE_VALUE);
}

// 关闭端口驱动
BOOL CloseMyPort()
{
return (CloseHandle(hMyPort) && StopDriver("MyPort"));
}

// 从指定端口读一个字节
// port: 端口
BYTE ReadPortByte(WORD port)
{
DWORD buf[2]; // 输入输出缓冲区
DWORD dwOutBytes; // IOCTL输出数据长度

buf[0] = port; // 第一个DWORD是端口
// buf[1] = 0; // 第二个DWORD是数据

// 用IOCTL_MYPORT_READ_BYTE读端口
::DeviceIoControl(hMyPort, // 设备句柄
IOCTL_MYPORT_READ_BYTE, // 取设备属性信息
buf, sizeof(buf), // 输入数据缓冲区
buf, sizeof(buf), // 输出数据缓冲区
&dwOutBytes, // 输出数据长度
(LPOVERLAPPED)NULL); // 用同步I/O

return (BYTE)buf[1];
}

// 将一个字节写到指定端口
// port: 端口
// data: 字节数据
void WritePortByte(WORD port, BYTE data)
{
DWORD buf[2]; // 输入输出缓冲区
DWORD dwOutBytes; // IOCTL输出数据长度

buf[0] = port; // 第一个DWORD是端口
buf[1] = data; // 第二个DWORD是数据

// 用IOCTL_MYPORT_WRITE_BYTE写端口
::DeviceIoControl(hMyPort, // 设备句柄
IOCTL_MYPORT_WRITE_BYTE, // 取设备属性信息
buf, sizeof(buf), // 输入数据缓冲区
buf, sizeof(buf), // 输出数据缓冲区
&dwOutBytes, // 输出数据长度
(LPOVERLAPPED)NULL); // 用同步I/O
}

有了ReadPortByte和WritePortByte这两个函数,我们就能很容易地操纵CMOS和speaker了(关于CMOS值的含义以及定时器寄存器定义,请参考相应的硬件资料):

// 0x70是CMOS索引端口(只写)
// 0x71是CMOS数据端口
BYTE ReadCmos(BYTE index)
{
BYTE data;

::WritePortByte(0x70, index);

data = ::ReadPortByte(0x71);

return data;
}

// 0x61是speaker控制端口
// 0x43是8253/8254定时器控制端口
// 0x42是8253/8254定时器通道2的端口
void Sound(DWORD freq )
{
BYTE data;

if(freq>=20 && freq<=20000)
{
freq = 1193181 / freq;

data = ::ReadPortByte(0x61);

if((data & 3) == 0)
{
::WritePortByte(0x61, data | 3);
::WritePortByte(0x43, 0xb6);
}

::WritePortByte(0x42, (BYTE)(freq%256));
::WritePortByte(0x42, (BYTE)(freq/256));
}
}

void NoSound( void )
{
BYTE data;

data = ::ReadPortByte(0x61);

::WritePortByte(0x61, data & 0xfc);
}

// 读出CMOS 128个字节
for(int i=0;i<128;i++)
{
BYTE data = ::ReadCmos(i);
... ...
}

// 用C调演奏“多-来-米”

// 1 = 262 Hz
::Sound(262);
::Sleep(200);
::NoSound();

// 2 = 288 Hz
::Sound(288);
::Sleep(200);
::NoSound();

// 3 = 320 Hz
::Sound(320);
::Sleep(200);
::NoSound();

Q 就是个简单的端口I/O,这么麻烦才能实现,搞得俺头脑稀昏,有没有简洁明了的办法啊?

A 上面的例子,之所以从编写驱动程序,到安装驱动,到启动服务,到打开设备,到访问设备,一直到读写端口,这样一路下来,是为了揭示在NT/2000/XP中硬件访问技术的本质。假如将所有过程封装起来,只提供OpenMyPort, CloseMyPort, ReadPortByte, WritePortByte甚至更高层的ReadCmos、WriteCmos、Sound、NoSound给你调用,是不是会感觉清爽许多?
实际上,我们平常做的基于一定硬件的二次开发,一般会先安装驱动程序(DRV)和用户接口的运行库(DLL),然后在此基础上开发出我们的应用程序(APP)。DRV、DLL、APP三者分别运行在核心态、核心态/用户态联络带、用户态。比如买了一块图象采集卡,要先安装核心驱动,它的“Development Tool Kit”,提供类似于PCV_Initialize, PCV_Capture等的API,就是扮演核心态和用户态联络员的角色。我们根本不需要CreateFile、CloseHandle、 DeviceIOControl、ReadFile、WriteFile等较低层次的直接调用。
Yariv Kaplan写过一个WinIO的例子,能实现对物理端口和内存的访问,提供了DRV、DLL、APP三方面的源码,有兴趣的话可以深入研究一下。

驱动程序源码MyPort.zip (3KB, 编译环境: VC6+2000DDK)
演示程序源码MyPortIo.zip (22KB, 含MyPort.sys, 该文件需复制到windows的system32/drivers目录中)
Yariv Kaplan的主页:http://www.internals.com


[作者后记]
“实战DeviceIoControl系列”,到此告一段落了。
所谓“实战DeviceIoControl”,其实名不副实,并不是一步一步地介绍一个大型应用的开发,限于篇幅,只是列举一些用到DeviceIoControl的场合的例子而已。对涉及硬件的开发人员,DeviceIoControl是一个非常重要的API,其基本用处是联络设备驱动和应用程序,象本例中编写设备的用户接口时用到的情形比较多。如果只是限于开发应用程序,可能永远都用不到,也可能被迫使用(如获取硬盘序列号)。

内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: