理解ASP.NET Core - 发送Http请求(HttpClient)
注:本文隶属于《理解ASP.NET Core》系列文章,请查看置顶博客或点击此处查看全文目录
前言
在.NET中,我们有很多发送Http请求的手段,如
HttpWebRequest、
WebClient以及
HttpClient。
在进入正文之前,先简单了解一下前2个:
HttpWebRequest
namespace System.Net { public class HttpWebRequest : WebRequest, ISerializable { } }
HttpWebRequest位于
System.Net命名空间下,继承自抽象类
WebRequest,是.NET中最早、最原始地用于操作Http请求的类。相对来说,该类提供的方法更接近于底层,所以它的使用较为繁琐,对于开发者的水平要求是比较高的。
WebClient
namespace System.Net { public class WebClient : Component { } }
同样的,
WebClient也位于
System.Net命名空间下,它主要是对
WebRequest进行了一层封装,简化了常用任务场景的使用,如文件上传、文件下载、数据上传、数据下载等,并提供了一系列事件。
不过,虽然
HttpWebRequest和
WebClient仍然可用,但官方建议,若没有特殊要求,不要使用他俩,而应该使用
HttpClient。那
HttpClient是什么呢?
HttpClient
namespace System.Net.Http { public class HttpClient : HttpMessageInvoker { } }
HttpClient位于
System.Net.Http命名空间下,它提供了
GetAsync、
PostAsync、
PutAsync、
DeleteAsync、
PatchAsync等方法,更适合操作当下流行的Rest风格的Http Api。而且,它提供的方法几乎都是异步的,非常适合当下的异步编程模型。
而且,
HttpClient旨在实例化一次,并在应用程序的整个生命周期内重复使用,也就是说,可以使用一个
HttpClient实例可以发送多次以及多个不同的请求。
不过需要注意的是,如果每次请求反而都实例化一个
HttpClient,由于
Dispose并不会立即释放套接字,那么当短时间内有大量请求时,就会导致服务器的套接字数被耗尽,从而引发
SocketException异常。
我们一起来看一个错误的示例:
public class ValuesController : ControllerBase { [HttpGet("WrongUsage")] public async Task<string> WrongUsage() { try { // 模拟10次请求,每次请求都创建一个新的 HttpClient var i = 0; while (i++ < 10) { using var client = new HttpClient(); await client.GetAsync("https://jsonplaceholder.typicode.com/posts/1"); } return "Success"; } catch (Exception ex) { return ex.ToString(); } } }
jsonplaceholder.typicode.com 是一个免费提供虚假API的网站,我们可以使用它来方便测试。
在Windows中,当你请求WrongUsage接口之后,可以通过 netstat 命令查看套接字连接(jsonplaceholder的IP为172.67.131.170:443),你会发现程序虽然已经退出了,但是连接并没有像我们所预期的那样立即关闭:
> netstat -n | find "172.67.131.170" TCP 172.16.161.10:1057 172.67.131.170:443 TIME_WAIT TCP 172.16.161.10:1058 172.67.131.170:443 TIME_WAIT TCP 172.16.161.10:1061 172.67.131.170:443 TIME_WAIT TCP 172.16.161.10:1065 172.67.131.170:443 TIME_WAIT TCP 172.16.161.10:1070 172.67.131.170:443 TIME_WAIT TCP 172.16.161.10:1073 172.67.131.170:443 TIME_WAIT TCP 172.16.161.10:10005 172.67.131.170:443 TIME_WAIT
下面是一个较为合理的示例:
public class ValuesController : ControllerBase { private static readonly HttpClient _httpClient; static ValuesController() { // 复用同一个实例 _httpClient = new HttpClient(); } }
可以看出,
HttpClient很容易被错误使用,并且,即使是上面的正确示例,仍然有很多待优化的地方。因此,为了解决这个问题,
IHttpClientFactory诞生了。
IHttpClientFactory
看名字就知道了,
IHttpClientFactory可以帮我们创建所需要的
HttpClient实例,我们无须关心实例的创建过程。与
HttpClient一样,位于
System.Net.Http命名空间下。
下面先了解一下它的一些用法。
基础用法
首先,注册HttpClientFactory相关的服务
var builder = WebApplication.CreateBuilder(args); builder.Services.AddHttpClient();
然后,构造函数注入
IHttpClientFactory,通过
CreateClient()创建Client实例。
public class ValuesController : ControllerBase { private readonly IHttpClientFactory _httpClientFactory; public ValuesController(IHttpClientFactory httpClientFactory) { _httpClientFactory = httpClientFactory; } [HttpGet] public async Task<string> Get() { // 通过 _httpClientFactory 创建 Client 实例 var client = _httpClientFactory.CreateClient(); var response = await client.GetAsync("https://jsonplaceholder.typicode.com/posts/1"); if (response.IsSuccessStatusCode) { return await response.Content.ReadAsStringAsync(); } return $"{response.StatusCode}: {response.ReasonPhrase}"; } }
输出:
{ "userId": 1, "id": 1, "title": "sunt aut facere repellat provident occaecati excepturi optio reprehenderit", "body": "quia et suscipit\nsuscipit recusandae consequuntur expedita et cum\nreprehenderit molestiae ut ut quas totam\nnostrum rerum est autem sunt rem eveniet architecto" }
命名客户端
类似于命名选项,我们也可以添加命名的HttpClient,并添加一些全局默认配置。下面我们添加一个名为
jsonplaceholder的客户端:
// jsonplaceholder client builder.Services.AddHttpClient("jsonplaceholder", (sp, client) => { // 基址 client.BaseAddress = new Uri("https://jsonplaceholder.typicode.com/"); // 请求头 client.DefaultRequestHeaders.Add(HeaderNames.Accept, "application/json"); client.DefaultRequestHeaders.Add(HeaderNames.UserAgent, "HttpClientFactory-Sample-Named"); }); [HttpGet("named")] public async Task<dynamic> GetNamed() { // 获取指定名称的 Client var client = _httpClientFactory.CreateClient("jsonplaceholder"); var response = await client.GetAsync("posts/1"); if (response.IsSuccessStatusCode) { return new { Content = await response.Content.ReadAsStringAsync(), AcceptHeader = response.RequestMessage!.Headers.Accept.ToString(), UserAgentHeader = response.RequestMessage.Headers.UserAgent.ToString() }; } return $"{response.StatusCode}: {response.ReasonPhrase}"; }
输出:
{ "content": "{\n \"userId\": 1,\n \"id\": 1,\n \"title\": \"sunt aut facere repellat provident occaecati excepturi optio reprehenderit\",\n \"body\": \"quia et suscipit\\nsuscipit recusandae consequuntur expedita et cum\\nreprehenderit molestiae ut ut quas totam\\nnostrum rerum est autem sunt rem eveniet architecto\"\n}", "acceptHeader": "application/json", "userAgentHeader": "HttpClientFactory-Sample-Named" }
实际上,在创建HttpClient实例时,也可以指定未在服务中注册的HttpClient名字。读完文章后面,你就知道为什么了。
类型化客户端
客户端也可以被类型化,这样做的好处有:
- 无需像命名客户端那样通过传递字符串获取客户端实例
- 可以将同一类别的调用接口进行归类、封装
- 有智能提示
下面看个简单地例子,首先,创建一个类型化客户端
JsonPlaceholderClient,用于封装对jsonplaceholder接口的调用:
public class JsonPlaceholderClient { private readonly HttpClient _httpClient; // 直接注入 HttpClient public JsonPlaceholderClient(HttpClient httpClient) { _httpClient = httpClient; } public async Task<dynamic> GetPost(int id) => await _httpClient.GetFromJsonAsync<dynamic>($"/posts/{id}"); }
为了让DI容器知道要将哪个HttpClient实例注入到
JsonPlaceholderClient的构造函数,我们需要配置一下服务:
builder.Services.AddHttpClient<JsonPlaceholderClient>(client => { client.BaseAddress = new Uri("https://jsonplaceholder.typicode.com/"); client.DefaultRequestHeaders.Add(HeaderNames.Accept, "application/json"); client.DefaultRequestHeaders.Add(HeaderNames.UserAgent, "HttpClientFactory-Sample-Typed"); });
最后,我们直接注入
JsonPlaceholderClient,而不再是
IHttpClientFactory,使用起来就好像在调用本地服务似的:
public class ValuesController : ControllerBase { private readonly JsonPlaceholderClient _jsonPlaceholderClient; public ValuesController(JsonPlaceholderClient jsonPlaceholderClient) { _jsonPlaceholderClient = jsonPlaceholderClient; } [HttpGet("typed")] public async Task<dynamic> GetTyped() { var post = await _jsonPlaceholderClient.GetPost(1); return post; } }
借助第三方库生成的客户端
一般来说,类型化的客户端已经大大简化了我们使用HttpClient的步骤和难度,不过,我们还可以借助第三方库再次简化我们的代码:我们只需要定义要调用的服务接口,第三方库会生成代理类。
常用的第三方库有以下两个:
这两个第三方库的使用方式非常类似,由于我比较熟悉WebApiClientCore,所以后面的示例均使用它进行演示。
首先,安装Nuget包:
Install-Package WebApiClientCore
接着,创建一个接口
IJsonPlaceholderApi:
[Header("User-Agent", "HttpClientFactory-Sample-Api")] [Header("Custom-Header", "Custom-Value")] public interface IJsonPlaceholderApi { [HttpGet("/posts/{id}")] Task<dynamic> GetPost(int id); }
怎么样,看起来是不是很像在写Web Api?
对了,别忘了进行服务注册:
builder.Services.AddHttpApi<IJsonPlaceholderApi>( o => { o.HttpHost = new Uri("https://jsonplaceholder.typicode.com/"); o.UseDefaultUserAgent = false; });
最后,我们就可以更方便地用它了:
public class ValuesController : ControllerBase { private readonly IJsonPlaceholderApi _jsonPlaceholderApi; public ValuesController(IJsonPlaceholderApi jsonPlaceholderApi) { _jsonPlaceholderApi = jsonPlaceholderApi; } [HttpGet("api")] public async Task<dynamic> GetApi() { var post = await _jsonPlaceholderApi.GetPost(1); return post; } }
HttpClient设计原理
上面我们提到过:
HttpClient旨在实例化一次,并在应用程序的整个生命周期内重复使用。如果每次请求都实例化一个
HttpClient,由于
Dispose并不会立即释放套接字,那么当短时间内有大量请求时,服务器的套接字数就会被耗尽,从而引发
SocketException异常。
为了能够真正理解这句话,我们一起看一下HttpClient的是如何发送请求并处理响应结果的。
下面,我们先看下HttpClient的基本结构:
按照惯例,为了方便理解,后续列出的源码中我已经删除了一些不是那么重要的代码。
public class HttpMessageInvoker : IDisposable { private volatile bool _disposed; private readonly bool _disposeHandler; private readonly HttpMessageHandler _handler; public HttpMessageInvoker(HttpMessageHandler handler) : this(handler, true) { } public HttpMessageInvoker(HttpMessageHandler handler, bool disposeHandler) { _handler = handler; _disposeHandler = disposeHandler; } [UnsupportedOSPlatformAttribute("browser")] public virtual HttpResponseMessage Send(HttpRequestMessage request, CancellationToken cancellationToken) => _handler.Send(request, cancellationToken); public virtual Task<HttpResponseMessage> SendAsync(HttpRequestMessage request, CancellationToken cancellationToken) => _handler.SendAsync(request, cancellationToken); public void Dispose() { Dispose(true); GC.SuppressFinalize(this); } protected virtual void Dispose(bool disposing) { if (disposing && !_disposed) { _disposed = true; if (_disposeHandler) { _handler.Dispose(); } } } } public class HttpClient : HttpMessageInvoker { private const HttpCompletionOption DefaultCompletionOption = HttpCompletionOption.ResponseContentRead; private volatile bool _disposed; private int _maxResponseContentBufferSize; public HttpClient() : this(new HttpClientHandler()) { } public HttpClient(HttpMessageHandler handler) : this(handler, true) { } public HttpClient(HttpMessageHandler handler, bool disposeHandler) : base(handler, disposeHandler) => _maxResponseContentBufferSize = HttpContent.MaxBufferSize; // 中间的Rest方法就略过了,因为它们的内部都是通过调用 SendAsync 实现的 // 同步的 Send 方法与异步的 SendAsync 实现类似 public Task<HttpResponseMessage> SendAsync(HttpRequestMessage request) => SendAsync(request, DefaultCompletionOption, CancellationToken.None); public override Task<HttpResponseMessage> SendAsync(HttpRequestMessage request, CancellationToken cancellationToken) => SendAsync(request, DefaultCompletionOption, cancellationToken); public Task<HttpResponseMessage> SendAsync(HttpRequestMessage request, HttpCompletionOption completionOption) => SendAsync(request, completionOption, CancellationToken.None); public Task<HttpResponseMessage> SendAsync(HttpRequestMessage request, HttpCompletionOption completionOption, CancellationToken cancellationToken) { var response = await base.SendAsync(request, cts.Token).ConfigureAwait(false); ThrowForNullResponse(response); if (ShouldBufferResponse(completionOption, request)) { await response.Content.LoadIntoBufferAsync(_maxResponseContentBufferSize, cts.Token).ConfigureAwait(false); } return response; } private static void ThrowForNullResponse(HttpResponseMessage? response) { if (response is null) throw new InvalidOperationException(...); } private static bool ShouldBufferResponse(HttpCompletionOption completionOption, HttpRequestMessage request) => completionOption == HttpCompletionOption.ResponseContentRead && !string.Equals(request.Method.Method, "HEAD", StringComparison.OrdinalIgnoreCase); protected override void Dispose(bool disposing) { if (disposing && !_disposed) { _disposed = true; // ... } base.Dispose(disposing); } }
看过之后,我们对
HttpClient的基本结构可以有一个清晰的认识:
HttpClient
继承自HttpMessageInvoker
,“调用者”,很形象的一个名字。Send/SendAsync
方法是整个类的核心方法,所有的请求都是通过调用它们来实现的HttpClient
只是对HttpMessageHandler
的包装,实际上,所有的请求都是通过这个Handler来发送的。
如果你足够细心,你会发现其中的一个构造函数接收了一个名为
disposeHandler的参数,用于指示是否要释放
HttpMessageHandler。为什么要这么设计呢?我们知道,
HttpClient旨在实例化一次,并在应用程序的整个生命周期内重复使用,实际上指的是
HttpMessageHandler,为了在多个地方复用它,该参数允许我们创建多个
HttpClient实例,但使用的都是同一个
HttpMessageHandler实例(参见下方的IHttpClientFactory设计方式)。
下面看一下
HttpMessageHandler及其子类
HttpClientHandler:
public abstract class HttpMessageHandler : IDisposable { protected HttpMessageHandler() { } // 这个方法是后加的,为了不影响它的已存在的子类,所以将其设置为了virtual(而不是abstract),并默认抛NSE protected internal virtual HttpResponseMessage Send(HttpRequestMessage request, CancellationToken cancellationToken) { throw new NotSupportedException(...); } protected internal abstract Task<HttpResponseMessage> SendAsync(HttpRequestMessage request, CancellationToken cancellationToken); protected virtual void Dispose(bool disposing) { // 基类中啥都没干 } public void Dispose() { Dispose(true); GC.SuppressFinalize(this); } } // 这里我们不讨论作为WASM运行在浏览器中的情况 public class HttpClientHandler : HttpMessageHandler { // Socket private readonly SocketsHttpHandler _underlyingHandler; private volatile bool _disposed; public HttpClientHandler() { _underlyingHandler = new HttpHandlerType(); ClientCertificateOptions = ClientCertificateOption.Manual; } private HttpMessageHandler Handler => _underlyingHandler; // Send 与 SendAsync 类似 protected internal override Task<HttpResponseMessage> SendAsync(HttpRequestMessage request, CancellationToken cancellationToken) => Handler.SendAsync(request, cancellationToken); protected override void Dispose(bool disposing) { if (disposing && !_disposed) { _disposed = true; _underlyingHandler.Dispose(); } base.Dispose(disposing); } }
实际上,在.NET Core 2.1(不包含)之前,
HttpClient默认使用的
HttpMessageHandler在各个平台上的实现各不相同,直到.NET Core 2.1开始,
HttpClient才统一默认使用
SocketsHttpHandler,这带来了很多好处:
- 更高的性能
- 消除了平台依赖,简化了部署和服务
- 在所有的.NET平台上行为一致
[UnsupportedOSPlatform("browser")] public sealed class SocketsHttpHandler : HttpMessageHandler { private readonly HttpConnectionSettings _settings = new HttpConnectionSettings(); private HttpMessageHandlerStage? _handler; private bool _disposed; // Send 与 SendAsync 类似 protected internal override Task<HttpResponseMessage> SendAsync(HttpRequestMessage request, CancellationToken cancellationToken) { HttpMessageHandler handler = _handler ?? SetupHandlerChain(); return handler.SendAsync(request, cancellationToken); } private HttpMessageHandlerStage SetupHandlerChain() { HttpConnectionSettings settings = _settings.CloneAndNormalize(); HttpConnectionPoolManager poolManager = new HttpConnectionPoolManager(settings); HttpMessageHandlerStage handler; if (settings._credentials == null) { handler = new HttpConnectionHandler(poolManager); } else { handler = new HttpAuthenticatedConnectionHandler(poolManager); } // 省略了一些Handlers管道的组装,与中间件管道类似 // 释放旧的 _handler if (Interlocked.CompareExchange(ref _handler, handler, null) != null) { handler.Dispose(); } return _handler; } protected override void Dispose(bool disposing) { if (disposing && !_disposed) { _disposed = true; _handler?.Dispose(); } base.Dispose(disposing); } } // HttpAuthenticatedConnectionHandler 结构类似 internal sealed class HttpConnectionHandler : HttpMessageHandlerStage { // Http连接池管理器 private readonly HttpConnectionPoolManager _poolManager; public HttpConnectionHandler(HttpConnectionPoolManager poolManager) => _poolManager = poolManager; internal override ValueTask<HttpResponseMessage> SendAsync(HttpRequestMessage request, bool async, CancellationToken cancellationToken) => _poolManager.SendAsync(request, async, doRequestAuth: false, cancellationToken); protected override void Dispose(bool disposing) { if (disposing) { _poolManager.Dispose(); } base.Dispose(disposing); } }
后面的就比较底层了,今天咱们就看到这里吧。下面我们看一下
IHttpClientFactory。
IHttpClientFactory设计方式
我们先从服务注册看起:
public static class HttpClientFactoryServiceCollectionExtensions { public static IServiceCollection AddHttpClient(this IServiceCollection services) { services.AddLogging(); services.AddOptions(); // 核心服务 services.TryAddTransient<HttpMessageHandlerBuilder, DefaultHttpMessageHandlerBuilder>(); services.TryAddSingleton<DefaultHttpClientFactory>(); services.TryAddSingleton<IHttpClientFactory>(serviceProvider => serviceProvider.GetRequiredService<DefaultHttpClientFactory>()); services.TryAddSingleton<IHttpMessageHandlerFactory>(serviceProvider => serviceProvider.GetRequiredService<DefaultHttpClientFactory>()); // 类型化客户端服务 services.TryAdd(ServiceDescriptor.Transient(typeof(ITypedHttpClientFactory<>), typeof(DefaultTypedHttpClientFactory<>))); services.TryAdd(ServiceDescriptor.Singleton(typeof(DefaultTypedHttpClientFactory<>.Cache), typeof(DefaultTypedHttpClientFactory<>.Cache))); services.TryAddEnumerable(ServiceDescriptor.Singleton<IHttpMessageHandlerBuilderFilter, LoggingHttpMessageHandlerBuilderFilter>()); services.TryAddSingleton(new HttpClientMappingRegistry()); // 默认注册一个名字为空字符串的 HttpClient 实例 services.TryAddTransient(s => s.GetRequiredService<IHttpClientFactory>().CreateClient(string.Empty)); return services; } public static IHttpClientBuilder AddHttpClient(this IServiceCollection services, string name) { AddHttpClient(services); // 返回一个Builder,以允许继续针对HttpClient进行配置 return new DefaultHttpClientBuilder(services, name); } public static IHttpClientBuilder AddHttpClient<[DynamicallyAccessedMembers(DynamicallyAccessedMemberTypes.PublicConstructors)] TClient>( this IServiceCollection services) where TClient : class { AddHttpClient(services); // 获取类型名作为客户端名 string name = TypeNameHelper.GetTypeDisplayName(typeof(TClient), fullName: false); var builder = new DefaultHttpClientBuilder(services, name); // 目的是通过 ActivatorUtilities 动态创建 TClient 实例,并通过构造函数注入 HttpClient builder.AddTypedClientCore<TClient>(validateSingleType: true); return builder; } }
很显然,
HttpMessageHandlerBuilder的作用就是创建
HttpMessageHandler实例,默认实现为
DefaultHttpMessageHandlerBuilder
IHttpMessageHandlerBuilderFilter会在
DefaultHttpClientFactory中用到,它可以在
HttpMessageHandlerBuilder.Build调用之前对
HttpMessageHandlerBuilder进行一些初始化操作。
IHttpClientFactory接口的默认实现是
DefaultHttpClientFactory:
internal class DefaultHttpClientFactory : IHttpClientFactory, IHttpMessageHandlerFactory { private readonly IServiceProvider _services; private readonly Func<string, Lazy<ActiveHandlerTrackingEntry>> _entryFactory; // 有效的Handler对象池,使用Lazy来保证每个命名客户端具有唯一的 HttpMessageHandler 实例 internal readonly ConcurrentDictionary<string, Lazy<ActiveHandlerTrackingEntry>> _activeHandlers; // 过期的Handler集合 internal readonly ConcurrentQueue<ExpiredHandlerTrackingEntry> _expiredHandlers; public DefaultHttpClientFactory( IServiceProvider services, IServiceScopeFactory scopeFactory, ILoggerFactory loggerFactory, IOptionsMonitor<HttpClientFactoryOptions> optionsMonitor, IEnumerable<IHttpMessageHandlerBuilderFilter> filters) { _services = services; _activeHandlers = new ConcurrentDictionary<string, Lazy<ActiveHandlerTrackingEntry>>(StringComparer.Ordinal); _entryFactory = (name) => { return new Lazy<ActiveHandlerTrackingEntry>(() => { return CreateHandlerEntry(name); }, LazyThreadSafetyMode.ExecutionAndPublication); }; } public HttpClient CreateClient(string name) { HttpMessageHandler handler = CreateHandler(name); return new HttpClient(handler, disposeHandler: false); } public HttpMessageHandler CreateHandler(string name) { // 若存在指定的命名客户端的活跃的Handler,则直接使用,若不存在,则新建一个 ActiveHandlerTrackingEntry entry = _activeHandlers.GetOrAdd(name, _entryFactory).Value; return entry.Handler; } internal ActiveHandlerTrackingEntry CreateHandlerEntry(string name) { HttpMessageHandlerBuilder builder = _services.GetRequiredService<HttpMessageHandlerBuilder>(); builder.Name = name; var handler = new LifetimeTrackingHttpMessageHandler(builder.Build()); // options.HandlerLifetime 默认2分钟 return new ActiveHandlerTrackingEntry(name, handler, scope, options.HandlerLifetime); } } public static class HttpClientFactoryExtensions { public static HttpClient CreateClient(this IHttpClientFactory factory) => factory.CreateClient(Options.DefaultName); // 名字为 string.Empty }
可以发现,我们每次调用
CreateClient,都是新创建一个HttpClient实例,但是,当这些HttpClient实例同名时,所使用的HttpMessageHandler在一定条件下,其实都是同一个。
另外,你也可以发现,所有通过IHttpClientFactory创建的HttpClient,都是命名客户端:
- 未指定名字的,则默认使用空字符串作为客户端的名字
- 类型客户端使用类型名作为客户端的名字
Handler的创建是通过
DefaultHttpMessageHandlerBuilder调用
Build来实现的,不同的是,Factory并非是简单地创建一个Handler,而是建立了一个Handler管道,这是通过抽象类
DelegatingHandler实现的。其中,管道最底层的Handler默认是
HttpClientHandler,与我们直接
new HttpClient()时所创建的Handler是一样的。
与中间件管道类似,
DelegatingHandler的作用就是将Http请求的发送和处理委托给内部的另一个Handler处理,而它可以在这个Handler处理之前和之后加一些自己的特定逻辑。
public abstract class DelegatingHandler : HttpMessageHandler { private HttpMessageHandler? _innerHandler; private volatile bool _disposed; [DisallowNull] public HttpMessageHandler? InnerHandler { get => _innerHandler; set => _innerHandler = value; } protected DelegatingHandler() { } // 这里接收的innerHandler就是负责发送和处理Http请求的 protected DelegatingHandler(HttpMessageHandler innerHandler) => InnerHandler = innerHandler; protected internal override HttpResponseMessage Send(HttpRequestMessage request, CancellationToken cancellationToken) => _innerHandler!.Send(request, cancellationToken); protected internal override Task<HttpResponseMessage> SendAsync(HttpRequestMessage request, CancellationToken cancellationToken) => _innerHandler!.SendAsync(request, cancellationToken); protected override void Dispose(bool disposing) { if (disposing && !_disposed) { _disposed = true; if (_innerHandler != null) { _innerHandler.Dispose(); } } base.Dispose(disposing); } }
这里我们看到的
LifetimeTrackingHttpMessageHandler,以及源码中我删除掉的
LoggingHttpMessageHandler都是
DelegatingHandler的子类。
你有没有想过,为啥最后要包装成
LifetimeTrackingHttpMessageHandler呢?其实很简单,它就是一个标识,标志着它内部的Handler在超出生命周期后,需要被释放。
另外,实际上,创建好的
HttpMessageHandler并非能够一直重用,默认可重用的生命周期为2分钟,我们会将可重用的放在
_activeHandlers中,而过期的放在了
_expiredHandlers,并在合适的时候释放销毁。注意,过期不意味着要立即销毁,只是不再重用,即不再分配给新的HttpClient实例了。
那为什么不让创建好的
HttpMessageHandler一直重用,干嘛要销毁呢?它的原理与各种池(如数据库连接池、线程池)类似,就是为了保证套接字连接在空闲的时候能够被及时关闭,而不是长时间保持打开的状态,白白占用资源。
总结
现在,我们已经对
HttpClient和
IHttpClientFactory有了一个清晰的认识,我们简单总结一下:
HttpClient
是当前.NET版本中发送Http请求的首选HttpClient
提供了很多异步Rest方法,非常适合当下的异步编程模型HttpClient
旨在实例化一次,并在应用程序的整个生命周期内重复使用。- 直接创建
HttpClient
实例,很容易被错误使用,建议通过IHttpClientFactory
来创建 HttpClient
是对HttpMessageHandler
的包装,默认使用HttpMessageHandler
的子类HttpClientHandler
,而HttpClientHandler
也只是对SocketsHttpHandler
的简单包装(不讨论WASM)- 通过
IHttpClientFactory
,我们可以方便地创建命名客户端、类型化客户端等 IHttpClientFactory
通过创建多个HttpClient
实例,但多个实例重用同一个HttpMessageHandler
来优化HttpClient
的创建
- (6)ASP.NET Core 中使用IHttpClientFactory发出HTTP请求
- ASP.NET Core 2.1 中的 HttpClientFactory (Part 2) 定义命名化和类型化的客户端
- ASP.NET Core 2.2 基础知识(十二) 发送 HTTP 请求
- 通过重建Hosting系统理解HTTP请求在ASP.NET Core管道中的处理流程[上]:采用管道处理请求
- ASP.Net Core2.1中的HttpClientFactory系列二:集成Polly处理瞬态故障
- 通过重建Hosting系统理解HTTP请求在ASP.NET Core管道中的处理流程[中]:管道如何处理请求
- 通过重建Hosting系统理解HTTP请求在ASP.NET Core管道中的处理流程[下]:管道是如何构建起来的?
- ASP.NET Core 2.1 : 十三.httpClient.GetAsync 报SSL错误的问题
- Asp.Net Core中HttpClient的使用方式
- Asp.net core 学习笔记 ( HttpClient )
- ASP.NET CORE 2.* 利用集成测试框架覆盖HttpClient相关代码
- (一)----使用HttpClient发送HTTP请求(通过get方法获取数据)
- ASP.NET MVC Web API 学习笔记----HttpClient简介
- ASP.NET Core Web服务器 Kestrel和Http.sys 特性详解
- .NET CORE HttpClient使用
- 二:理解ASP.NET的运行机制(例:基于HttpHandler的URL重写)
- 问题:调用 ASP.Net Core WebAPI的HTTP POST方法时,从 [FromBody] 中读取的 MongoDB GeoJsonObjectModel成员总是null
- 稳扎稳打Silverlight(53) - 4.0通信之对WCF NetTcpBinding的支持, 在Socket通信中通过HTTP检索策略文件, HTTP请求中的ClientHttp和BrowserHttp
- 稳扎稳打Silverlight(53) - 4.0通信之对WCF NetTcpBinding的支持, 在Socket通信中通过HTTP检索策略文件, HTTP请求中的ClientHttp和BrowserHttp
- 稳扎稳打Silverlight(53) - 4.0通信之对WCF NetTcpBinding的支持, 在Socket通信中通过HTTP检索策略文件, HTTP请求中的ClientHttp和BrowserHttp