您的位置:首页 > 其它

B+树适合作为索引的结构 以及索引原理

u013099854 2020-05-11 04:13 633 查看 https://blog.csdn.net/u0130998

一.索引的本质:

索引是帮助数据库高效的获取数据的数据结构,因此可以理解为索引的本质就是数据结构

增加查询的速度有许多的算法:最简单的顺序查找,但是当数据量变大的时候会查询效率会非常的低,二分查找,二叉树查找,但是每一种算法都只适用于特定的数据结构上,如二分查找要求数据有序,二叉树应用于二叉树上,因此要适用这个算法的同时要维护好与之匹配的数据结构,这种数据结构就是数据库维护的索引

这个例子中的做测试是数据,有测试就是索引所维护的数据结构,方便进行数据的查询 

二.平衡二叉树不适合做索引:

  1. 我们说的平衡二叉树结构,指的是逻辑结构上的平衡二叉树,其物理实现是数组。然后由于在逻辑结构上相近的节点在物理结构上可能会差很远。因此,每次读取的磁盘页的数据中有许多是用不上的。因此,查找过程中要进行许多次的磁盘读取操作。
  2. 而适合作为索引的结构应该是尽可能少的执行磁盘IO操作,因为执行磁盘IO操作非常的耗时。因此,平衡二叉树并不适合作为索引结构。
  3. B树相对于平衡二叉树的不同是,每个节点包含的关键字增多了,特别是在B树应用到数据库中的时候,数据库充分利用了磁盘块的原理(磁盘数据存储是采用块的形式存储的,每次IO进行数据读取时,同一个磁盘块的数据可以一次性读取出来)把节点大小限制和充分使用在磁盘快大小范围;把树的节点关键字增多后树的层级比原来的二叉树少了,减少数据查找的次数和复杂度。

三.B-Tree(B+Tree)的优势:

1.磁盘预读与局部性原理

[code]局部性原理与磁盘预读:

由于存储介质的特性,磁盘本身存取就比主存慢很多,再加上机械运动耗费,磁盘的存取速度往往是主存的几百分分之一,因此为了提高效率,
要尽量减少磁盘I/O。为了达到这个目的,磁盘往往不是严格按需读取,而是每次都会预读,即使只需要一个字节,磁盘也会从这个位置开始,
顺序向后读取一定长度的数据放入内存。这样做的理论依据是计算机科学中著名的局部性原理:
当一个数据被用到时,其附近的数据也通常会马上被使用。
程序运行期间所需要的数据通常比较集中。
由于磁盘顺序读取的效率很高(不需要寻道时间,只需很少的旋转时间),因此对于具有局部性的程序来说,预读可以提高I/O效率。

 2.B-Tree(B+Tree)优势:

索引本身也很大,不可能全部存储在内存中,因此索引往往以索引文件的形式存储的磁盘上。这样的话,索引查找过程中就要产生磁盘I/O消耗,相对于内存存取,I/O存取的消耗要高几个数量级,所以评价一个数据结构作为索引的优劣最重要的指标就是在查找过程中磁盘I/O操作次数的渐进复杂度。换句话说,索引的结构组织要尽量减少查找过程中磁盘I/O的存取次数。

B树的每个节点可以存储多个关键字,它将节点大小设置为磁盘页的大小,充分利用了磁盘预读的功能。每次读取磁盘页时就会读取一整个节点。也正因每个节点存储着非常多个关键字,树的深度就会非常的小。进而要执行的磁盘读取操作次数就会非常少,更多的是在内存中对读取进来的数据进行查找。

B树的查询,主要发生在内存中,而平衡二叉树的查询,则是发生在磁盘读取中。因此,虽然B树查询查询的次数不比平衡二叉树的次数少,但是相比起磁盘IO速度,内存中比较的耗时就可以忽略不计了。因此,B树更适合作为索引
 

四.B+Tree与B-Tree比较

B-Tree每个节点都存储key和data,所有节点组成这棵树,并且叶子节点指针为null。

B+Tree:只有叶子节点存储data,叶子节点包含了这棵树的所有键值,叶子节点不存储指针。 

B+Tree的内部结点并没有指向关键字具体信息的指针。因此其内部结点相对B 树更小。如果把所有同一内部结点的关键字存放在同一盘块中,那么盘块所能容纳的关键字数量也越多。一次性读入内存中的需要查找的关键字也就越多。相对来说IO读写次数也就降低了。

举个例子,假设磁盘中的一个盘块容纳16bytes,而一个关键字2bytes,一个关键字具体信息指针2bytes。一棵9阶B-tree(一个结点最多8个关键字)的内部结点需要2个盘快。而B+ 树内部结点只需要1个盘快。当需要把内部结点读入内存中的时候,B 树就比B+ 树多一次盘块查找时间(在磁盘中就是盘片旋转的时间)。 

B+Tree更加查询效率更加稳定:

由于非终结点并不是最终指向文件内容的结点,而只是叶子结点中关键字的索引。所以任何关键字的查找必须走一条从根结点到叶子结点的路。所有关键字查询的路径长度相同,导致每一个数据的查询效率相当。

五.不同的数据库引擎下的B+Tree的结构

1.MyISAM索引的实现:

MyISAM引擎使用B+Tree作为索引结构,叶节点的data域存放的是数据记录的地址。下图是MyISAM索引的原理图

 

这里设表一共有三列,假设我们以Col1为主键,则图8是一个MyISAM表的主索引(Primary key)示意。可以看出MyISAM的索引文件仅仅保存数据记录的地址。在MyISAM中,主索引和辅助索引(Secondary key)在结构上没有任何区别,只是主索引要求key是唯一的,而辅助索引的key可以重复。如果我们在Col2上建立一个辅助索引,则此索引的结构如下图所示:

 

同样也是一颗B+Tree,data域保存数据记录的地址。因此,MyISAM中索引检索的算法为首先按照B+Tree搜索算法搜索索引,如果指定的Key存在,则取出其data域的值,然后以data域的值为地址,读取相应数据记录。

MyISAM的索引方式也叫做“非聚集”的,之所以这么称呼是为了与InnoDB的聚集索引区分。

2.InnoDB索引实现

虽然InnoDB也使用B+Tree作为索引结构,但具体实现方式却与MyISAM截然不同。

第一个重大区别是InnoDB的数据文件本身就是索引文件。从上文知道,MyISAM索引文件和数据文件是分离的,索引文件仅保存数据记录的地址。而在InnoDB中,表数据文件本身就是按B+Tree组织的一个索引结构,这棵树的叶节点data域保存了完整的数据记录。这个索引的key是数据表的主键,因此InnoDB表数据文件本身就是主索引。

 

以上是InnoDB主索引(同时也是数据文件)的示意图,可以看到叶节点包含了完整的数据记录。这种索引叫做聚集索引。因为InnoDB的数据文件本身要按主键聚集,所以InnoDB要求表必须有主键(MyISAM可以没有),如果没有显式指定,则MySQL系统会自动选择一个可以唯一标识数据记录的列作为主键,如果不存在这种列,则MySQL自动为InnoDB表生成一个隐含字段作为主键,这个字段长度为6个字节,类型为长整形。

第二个与MyISAM索引的不同是InnoDB的辅助索引data域存储相应记录主键的值而不是地址。换句话说,InnoDB的所有辅助索引都引用主键作为data域。例如,定义在Col3上的一个辅助索引:

 

这里以英文字符的ASCII码作为比较准则。聚集索引这种实现方式使得按主键的搜索十分高效,但是辅助索引搜索需要检索两遍索引:首先检索辅助索引获得主键,然后用主键到主索引中检索获得记录。

InnoDB的二级索引的叶子包含主键值,而不是行指针(row pointers),这减小了移动数据或者数据页面分裂时维护二级索引的开销,因为InnoDB不需要更新索引的行指针

 

欢迎关注作者公众号交流以及投稿

引用:

http://blog.codinglabs.org/articles/theory-of-mysql-index.htmlMySQL索引背后的数据结构及算法原理

https://www.geek-share.com/detail/2518440320.html:从B树、B+树、B*树谈到R 树

 

守望希望 原创文章 10获赞 0访问量 839 关注 私信
标签: