您的位置:首页 > 其它

ESL4.5 学习笔记(含感知器内容&SVM预备知识)

2020-03-20 18:42 155 查看

4.5 分离超平面

这是一篇有关《统计学习基础》,原书名The Elements of Statistical Learning的学习笔记,该书学习难度较高,有很棒的学者将其翻译成中文并放在自己的个人网站上,翻译质量非常高,本博客中有关翻译的内容都是出自该学者的网页,个人解读部分才是自己经过查阅资料和其他学者的学习笔记,结合个人理解总结成的原创内容。
有关ESL更多的学习笔记的markdown文件,可在作者GitHub上查看下载。

原文 The Elements of Statistical Learning
翻译 szcf-weiya
时间 2018-03-26
注解 Hytn Chen
更新 2020-02-27

翻译原文

我们已经看到线性判别分析和逻辑斯蒂回归估计线性判别边界的方式很相似,但是又有些不同.这章的剩下部分我们来描述一下分离超平面分类器 (separating hyperplane classifiers).这些过程构造线性判别边界时试图把数据尽可能分到不同的类别中去.它们可以看成是将在 12 章讨论的支持向量机的基础.这节的数学层次比前面的章节更高一点.

图 4.14 显示了 IR2\rm{IR}^2IR2 空间中两个类别的 20 个数据点.

图 4.14. 被超平面分离开的两个类别的简单例子.橘黄色的线条是最小二乘的解,误判了训练集中的一个点.图中也显示了通过不同初始值运用感知器学习算法得到的分离超平面.

这些点可以被线性边界分离开.图中的蓝色线条是无穷种可能分离超平面中的两个.黄色的线条表示该问题的最小二乘解,通过在 XXX 上对 −1/1-1/1−1/1 响应变量 YYY 回归得到(带有截距);该直线由下式给出

{x:β^0+β^1x1+β^2x2=0}(4.39) \{x:\hat\beta_0+\hat\beta_1x_1+\hat\beta_2x_2=0\}\tag{4.39} {x:β^​0​+β^​1​x1​+β^​2​x2​=0}(4.39)

最小二乘解并不能很好地把点分离开,而且有一个误判.这与通过 LDA 找到的边界相同,这因为在两个类别的情况下 LDA 与线性回归是等价的.(4.3 节和练习 4.2)

!!! info “weiya 注:Ex. 4.2”
具体证明过程见Issue 108: Ex. 4.2

类似 4.39{4.39}4.39 的分类器计算输入特征的线性组合并且返回符号,在 1950s 末期称之为感知器 (perceptrons) (Rosenblatt,19581) .感知器是 1980s 和 1990s 神经网络模型的基础.

在我们继续之前,稍微岔开去回顾一些向量代数的知识.图 4.15 描述了由等式 f(x)=β0+βTx=0f(x)=\beta_0+\beta^Tx=0f(x)=β0​+βTx=0 定义的超平面或仿射集LLL;因为我们是在 R2R^2R2 空间中,所以这是一条直线.这里我们列出一些性质:

  1. 对于在 LLL 中的两点 x1x_1x1​ 和 x2x_2x2​,βT(x1−x2)=0\beta^T(x_1-x_2)=0βT(x1​−x2​)=0,因此 LLL 表面的 法向量为β∗=β/∥β∥\beta^*=\beta/\Vert\beta\Vertβ∗=β/∥β∥
  2. 对于 LLL 的任意点,βTx0=−β0\beta^Tx_0=-\beta_0βTx0​=−β0​
  3. 任意点 xxx 到 LLL 的符号距离为

β∗T(x−x0)=1∥β∥(βTx+β0)=1∥f′(x)∥f(x)(4.40) \begin{aligned} {\beta^*}^T(x-x_0)&=\frac{1}{\Vert\beta\Vert}(\beta^Tx+\beta_0)\\ &=\frac{1}{\Vert f'(x)\Vert}f(x)\tag{4.40} \end{aligned} β∗T(x−x0​)​=∥β∥1​(βTx+β0​)=∥f′(x)∥1​f(x)​(4.40)

因此 f(x)f(x)f(x) 与 xxx 到由 f(x)=0f(x)=0f(x)=0 定义的超平面符号距离成比例.

图4.15. 超平面(仿射集)的线性代数

4.5.1 Rosenblatt 感知器学习算法

感知器学习算法 (perceptron learning algorithm) 试图通过最小化误分类的点到判别边界距离来寻找分离超平面.如果响应变量 yi=1y_i=1yi​=1 是误分类的,则 xiTβ+β0<0x_i^T\beta+\beta_0 < 0xiT​β+β0​<0,对于误分类的响应变量 yi=−1y_i=-1yi​=−1是反过来的.目标是最小化
D(β,β0)=−∑i∈Myi(xiTβ+β0)(4.41) D(\beta,\beta_0)=-\sum\limits_{i\in\mathcal M}y_i(x_i^T\beta+\beta_0)\tag{4.41} D(β,β0​)=−i∈M∑​yi​(xiT​β+β0​)(4.41)

其中 M\mathcal MM 是误分类点的指标集.上式是非负的且与误分类的点到由 βTx+β0=0\beta^Tx+\beta_0=0βTx+β0​=0 定义的判别边界的距离成比例.梯度(假设 M\mathcal MM 固定)由下式给出

∂D(β,β0)∂β=−∑i∈Myixi∂D(β,β0)∂β0=−∑i∈Myi(4.43) \begin{aligned} \dfrac{\partial D(\beta,\beta_0)}{\partial \beta}&=-\sum\limits_{i\in \mathcal M}y_ix_i\\ \dfrac{\partial D(\beta,\beta_0)}{\partial \beta_0}&=-\sum\limits_{i\in \mathcal M}y_i\tag{4.43} \end{aligned} ∂β∂D(β,β0​)​∂β0​∂D(β,β0​)​​=−i∈M∑​yi​xi​=−i∈M∑​yi​​(4.43)

这个算法实际上应用了随机梯度下降 (stochastic gradient descent) 来最小化分段线性准则.这意味着不是计算经过一步之后每个观测值的梯度贡献之和,而是当每个观测被访问之后采取新的一步.因此误分类的观测值会以某种次序被访问,而且参数 β\betaβ 通过下式更新

(ββ0)←(ββ0)+ρ(yixiyi) \left(\begin{array}{l} \beta \\ \beta_{0} \end{array}\right) \leftarrow\left(\begin{array}{l} \beta \\ \beta_{0} \end{array}\right)+\rho\left(\begin{array}{l} y_{i} x_{i} \\ y_{i} \end{array}\right) (ββ0​​)←(ββ0​​)+ρ(yi​xi​yi​​)

这里 ρ\rhoρ 是学习速率,不失一般性这种情形下可以取1.如果类别是线性可分的,则可以证明在有限步后该算法收缩到一个分离超平面(练习 4.6).图 4.14 显示了对一个简单问题的两个解,每个都是从不同的随机猜测开始的.

Ripley (1996)2 总结了该算法有以下一些问题:

  • 当数据是线性可分时,有许多解,且解基于初始值的设定.
  • “有限”步可以非常大.差异越小,需要花的时间就越久.
  • 当数据不是线性可分时,算法不会收敛,而且会形成循环.循环可以很长因此不容易检测.

第二个问题经常通过不在原空间中寻找超平面消除,而在一个通过构造在原空间中变量的基函数变换得到的增广空间中.这类似于在多项式回归问题中为了将残差降为 0 而使得阶数特别大.完美的分离不总是可以达到:举个例子,如果来自两个类别的观测值有一个共同输入.当然或许也不需要完美分割,因为得到的模型很可能是过拟合从而不能很好地进行推广.我们将在下一节的最后回到这个问题的讨论.

对于第一个问题的优雅解决方式是对分离超平面加上额外的约束条件

个人解读

感知机算法收敛性证明

首先,在数据是线性可分的情况下,定义感知机最后一步也就是分类完成时的参数为βsep\beta_{sep}βsep​,定义x∗=(x,1)x^*=(x,1)x∗=(x,1),定义zi=xi∗∣∣xi∗∣∣z_i=\frac{x_i^*}{||x_i^*||}zi​=∣∣xi∗​∣∣xi∗​​。由于线性可分,也就是说存在这样的β\betaβ,使得
βTxi∗>0 when yi=+1βTxi∗<0 when yi=−1 \begin{aligned} &\beta^{T} x_{i}^{*}>0 \quad \text { when } \quad y_{i}=+1\\ &\beta^{T} x_{i}^{*}<0 \quad \text { when } \quad y_{i}=-1 \end{aligned} ​βTxi∗​>0 when yi​=+1βTxi∗​<0 when yi​=−1​
这里的i的范围是从1到N,N为训练样本个数。上面的表达式其实就等价于对于所有的i,有下面关系
yiβTxi∗>0 y_i\beta^Tx_i^*>0 yi​βTxi∗​>0
两边除以xi∗x_i^*xi∗​的模,得到yiβTzi>0y_i\beta^Tz_i>0yi​βTzi​>0,假设m为一任意小的正实数,则有如下不等式
yiβTzi≥m y_{i} \beta^{T} z_{i} \geq m yi​βTzi​≥m
上式等价于
yi(1mβ)Tzi≥1 y_{i} (\frac{1}{m}\beta)^{T} z_{i} \geq 1 yi​(m1​β)Tzi​≥1
如果定义βsep=1mβ\beta_{sep}=\frac{1}{m}\betaβsep​=m1​β,那么对于所有的i,都满足如下关系
yiβsepTzi≥1 y_{i} \beta_{sep}^{T} z_{i} \geq 1 yi​βsepT​zi​≥1
式4.44中,当ρ\rhoρ为1时,等式可写为βnew=βold+yizi\beta_{new}=\beta_{old}+y_iz_iβnew​=βold​+yi​zi​,两边减去βsep\beta_{sep}βsep​得到下式
βnew −βsep =βold −βsep +yizi \beta_{\text {new }}-\beta_{\text {sep }}=\beta_{\text {old }}-\beta_{\text {sep }}+y_{i} z_{i} βnew ​−βsep ​=βold ​−βsep ​+yi​zi​
两边平方得
∥βnew −βsep ∥2=∥βold −βsep ∥2+yi2∥zi∥2+2yi(βold −βsep )Tzi \left\|\beta_{\text {new }}-\beta_{\text {sep }}\right\|^{2}=\left\|\beta_{\text {old }}-\beta_{\text {sep }}\right\|^{2}+y_{i}^{2}\left\|z_{i}\right\|^{2}+2 y_{i}\left(\beta_{\text {old }}-\beta_{\text {sep }}\right)^{T} z_{i} ∥βnew ​−βsep ​∥2=∥βold ​−βsep ​∥2+yi2​∥zi​∥2+2yi​(βold ​−βsep ​)Tzi​
根据定义已知上式等式右边第二项值为1,第三项可写为
2(yiβold Tzi−yiβsep Tzi) 2\left(y_{i} \beta_{\text {old }}^{T} z_{i}-y_{i} \beta_{\text {sep }}^{T} z_{i}\right) 2(yi​βold T​zi​−yi​βsep T​zi​)
已知βsep\beta_{sep}βsep​是可以正确分类所有点的一组参数,并且上面已经证明对于所有的点都有yiβsepTzi≥1y_{i} \beta_{sep}^{T} z_{i} \geq 1yi​βsepT​zi​≥1。而对于βold\beta_{old}βold​是会错误分类点的一组参数,根据感知器算法原理,能更新到参数的点都是被算法选中的误分类的点,所以有yiβoldTzi<0y_{i} \beta_{old}^{T} z_{i} < 0yi​βoldT​zi​<0,因此
2(yiβold Tzi−yiβsep piT)≤2(0−1)=−2 2\left(y_{i} \beta_{\text {old }}^{T} z_{i}-y_{i} \beta_{\text {sep } \mathrm{p} i}^{T}\right) \leq 2(0-1)=-2 2(yi​βold T​zi​−yi​βsep piT​)≤2(0−1)=−2
所以最终可得
∥βnew −βsep ∥2≤∥βold −βsep ∥2+1−2=∥βold −βsep ∥2−1 \left\|\beta_{\text {new }}-\beta_{\text {sep }}\right\|^{2} \leq\left\|\beta_{\text {old }}-\beta_{\text {sep }}\right\|^{2}+1-2=\left\|\beta_{\text {old }}-\beta_{\text {sep }}\right\|^{2}-1 ∥βnew ​−βsep ​∥2≤∥βold ​−βsep ​∥2+1−2=∥βold ​−βsep ​∥2−1
所以,只要数据满足线性可分的假设,对于任意的随机初始化的一组参数βstart\beta_{start}βstart​,我们最多花费∥βstart−βsep ∥2\left\|\beta_{\text {start}}-\beta_{\text {sep }}\right\|^{2}∥βstart​−βsep ​∥2步进行更新,最终都可以将其更新为能够正确分类的一组参数βsep\beta_{sep}βsep​。

4.5.2 最优分离超平面

最优分离超平面将两个类别分离开且使得超平面到每一个类别最近点的距离最大 (Vapnik, 1996)3.这样不仅得到分离超平面问题的唯一解,而且通过使得在训练集上两个类别的边缘 (margin) 最大,这使得在测试集上有更好的分类表现.

我们需要推广准则 4.41{4.41}4.41.考虑下面的优化问题

max⁡β,β0,∥β∥=1Mst.yi(xiTβ+β0)≥M,  i=1,…,N(4.45) \begin{aligned} \underset{\beta,\beta_0,\Vert\beta\Vert=1}{\max}& M\\ \rm{st.} & y_i(x_i^T\beta+\beta_0)\ge M,\;i=1,\ldots,N \end{aligned} \tag{4.45} β,β0​,∥β∥=1max​st.​Myi​(xiT​β+β0​)≥M,i=1,…,N​(4.45)

这一系列条件保证了所有点到由 β\betaβ 和 β0\beta_0β0​ 定义的判别边界的符号距离至少为 MMM,我们寻找最大的 MMM 和相关的参数.我们可以通过把条件替换为下面的形式来摆脱 ∥β∥=1\Vert\beta\Vert=1∥β∥=1 的限制

1∥β∥yi(xiTβ+β0)≥M(4.46) \frac{1}{\Vert\beta\Vert}y_i(x_i^T\beta+\beta_0)\ge M\tag{4.46} ∥β∥1​yi​(xiT​β+β0​)≥M(4.46)

(重新定义了 β0\beta_0β0​)或者等价于

yi(xiTβ+β0)≥M∥β∥(4.47) y_i(x_i^T\beta+\beta_0)\ge M\Vert\beta\Vert\tag{4.47} yi​(xiT​β+β0​)≥M∥β∥(4.47)

因为对于任意满足这些不等式的 β\betaβ 和 β0\beta_0β0​,任意正的放缩因子同样成立,我们可以任意令 ∥β∥=1/M\Vert\beta\Vert=1/M∥β∥=1/M.因此 (4.45) 等价于

min⁡β,β012∥β∥2st.yi(xiTβ+β0)≥1  i=1,…,N(4.48) \begin{aligned} \underset{\beta,\beta_0}{\min}&\frac{1}{2}\Vert\beta\Vert^2\\ \rm{st.} & y_i(x_i^T\beta+\beta_0)\ge 1 \; i=1,\ldots,N \end{aligned} \tag{4.48} β,β0​min​st.​21​∥β∥2yi​(xiT​β+β0​)≥1i=1,…,N​(4.48)

根据 4.40{4.40}4.40,上面的约束条件定义了一个判别边界周围厚度为 1/∥β∥1/\Vert\beta\Vert1/∥β∥ 的平板 (slab) 或者空白 (margin).因此我们选择 β\betaβ 和 β0\beta_0β0​ 最大化厚度.这是一个凸优化问题(线性不等约束的二次准则).Lagrange(原问题)函数关于 β\betaβ 和 β0\beta_0β0​ 进行最小化是

LP=12∥β∥2−∑i=1Nαi[yi(xiTβ+β0)−1](4.49) L_P=\frac{1}{2}\Vert\beta\Vert^2-\sum\limits_{i=1}^N\alpha_i[y_i(x_i^T\beta+\beta_0)-1]\tag{4.49} LP​=21​∥β∥2−i=1∑N​αi​[yi​(xiT​β+β0​)−1](4.49)

令微分为 0,则有

β=∑i=1Nαiyixi(4.50) \beta=\sum\limits_{i=1}^N\alpha_iy_ix_i\tag{4.50} β=i=1∑N​αi​yi​xi​(4.50)

0=∑i=1Nαiyi(4.51) 0=\sum\limits_{i=1}^N\alpha_iy_i\tag{4.51} 0=i=1∑N​αi​yi​(4.51)

替换掉 4.49{4.49}4.49 中的这些项我们得到被称作 Wolfe 的对偶问题
LD=∑i=1Nαi−12∑i=1N∑k=1NαiαkyiykxiTxkst  αi≥0(4.52) L_D=\sum\limits_{i=1}^N\alpha_i-\frac{1}{2}\sum\limits_{i=1}^N\sum\limits_{k=1}^N\alpha_i\alpha_ky_iy_kx_i^Tx_k\\\qquad\qquad \qquad \qquad \qquad \rm{st} \; \alpha_i\ge 0\qquad \tag{4.52} LD​=i=1∑N​αi​−21​i=1∑N​k=1∑N​αi​αk​yi​yk​xiT​xk​stαi​≥0(4.52)

Hytn注:

如何从式(4.49)推得(4.52)?首先对原式展开
Lp=12∥β∥2−∑i=1NαiyixiTβ−β0∑i=1Nαiyi+∑i=1Nαi L_{p}=\frac{1}{2}\|\beta\|^{2}-\sum_{i=1}^{N} \alpha_{i} y_{i} x_{i}^{T} \beta-\beta_{0} \sum_{i=1}^{N} \alpha_{i} y_{i}+\sum_{i=1}^{N} \alpha_{i} Lp​=21​∥β∥2−i=1∑N​αi​yi​xiT​β−β0​i=1∑N​αi​yi​+i=1∑N​αi​
上式等式右边第一项可变换如下
∥β∥2=βTβ=(∑i=1NαiyixiT)(∑j=1Nαjyjxj)=∑i=1N∑j=1NαiαjyiyjxiTxj \|\beta\|^{2}=\beta^{T} \beta=\left(\sum_{i=1}^{N} \alpha_{i} y_{i} x_{i}^{T}\right)\left(\sum_{j=1}^{N} \alpha_{j} y_{j} x_{j}\right)=\sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{T} x_{j} ∥β∥2=βTβ=(i=1∑N​αi​yi​xiT​)(j=1∑N​αj​yj​xj​)=i=1∑N​j=1∑N​αi​αj​yi​yj​xiT​xj​
等式右边第二项可变换如下
∑i=1NαiyixiTβ=∑i=1NαiyixiT(∑j=1Nαjyjxj)=∑i=1N∑j=1NαiαjyiyjxiTxj \sum_{i=1}^{N} \alpha_{i} y_{i} x_{i}^{T} \beta=\sum_{i=1}^{N} \alpha_{i} y_{i} x_{i}^{T}\left(\sum_{j=1}^{N} \alpha_{j} y_{j} x_{j}\right)=\sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{T} x_{j} i=1∑N​αi​yi​xiT​β=i=1∑N​αi​yi​xiT​(j=1∑N​αj​yj​xj​)=i=1∑N​j=1∑N​αi​αj​yi​yj​xiT​xj​
将上面的项合并后可得式(4.52)。

通过在正象限内最大化 LDL_DLD​ 得到解,这是一个简单的凸优化问题,可以使用标准的软件来求解.另外解必须满足 KKT(Karush-Kuhn-Tucker) 条件,它包括 4.50{4.50}4.50,4.51{4.51}4.51,4.52{4.52}4.52 以及

αi[yi(xiTβ+β0)−1]=0  ∀i.(4.53) \alpha_i[y_i(x_i^T\beta+\beta_0)-1]=0\;\forall i.\tag{4.53} αi​[yi​(xiT​β+β0​)−1]=0∀i.(4.53)

从这些我们看到

  • 如果 αi>0\alpha_i\gt 0αi​>0,则 yi(xiTβ+β0)=1y_i(x_i^T\beta+\beta_0)=1yi​(xiT​β+β0​)=1,或者换句话说,xix_ixi​ 在 slab 的边界上;
  • 如果 yi(xiTβ+β0)>1y_i(x_i^T\beta+\beta_0)>1yi​(xiT​β+β0​)>1,xix_ixi​ 不在平板的边界上,而且 αi=0\alpha_i=0αi​=0.

从 4.50{4.50}4.50 我们可以看到解向量 β\betaβ 定义为支撑点 (support points) xix_ixi​ 的线性组合——这些点通过 αi>0\alpha_i >0αi​>0 定义在 slab 的边界上.图 4.16 显示了我们那个简单例子的最优分离超平面;这里有三个支撑点.同样地,β0\beta_0β0​ 可以通过对任意支撑点求解 4.53{4.53}4.53 得到.

图 4.16. 和图 4.14 同样的数据.阴影区域描绘了分离两个类别的最大边缘空白.这里有三个支撑点;它们位于边缘空白的边界上,最优分离超平面(蓝色线条)平分了平板.这张图里面的边界是通过逻辑斯蒂回归得到的(红色线条),它与最优分离超平面非常接近(见12.3.3 节

最优分离超平面得到函数 f^(x)=xTβ^+β^0\hat f(x)=x^T\hat\beta+\hat\beta_0f^​(x)=xTβ^​+β^​0​ 来对新的观测分类

G^(x)=signf^(x)(4.54) \hat G(x)=\rm{sign} \hat f(x)\tag{4.54} G^(x)=signf^(x)(4.54)

尽管没有训练观测点会落在空白边缘里面(由构造可知),但这对于测试观测点不一定正确.直觉上,若训练数据边缘空白较大,会使得在测试数据集上良好的分离.

关于支撑点的描述似乎表明解更加关注支撑点,而且对于模型错误更加稳健.而另一方面,LDA 的解取决于所有数据点,即便点远离判别边界.然而,注意到这些支撑点也需要用到所有数据点.当然,如果类别真的服从高斯分布,LDA 是最优的,分离超平面会因关注类别边界数据(噪声)而付出代价.

图 4.16 中还画出了该问题的通过极大似然法得到的逻辑斯蒂回归的解.这种情形下两个解都是很相似的.当存在分离超平面,逻辑斯蒂回归总是能找到它,因为这种情况下概率的对数值总能达到 0(练习 4.5).逻辑斯蒂回归的解与分离超平面的解有其它的定性上的特点.系数向量通过在输入特征上零均值线性响应向量的加权最小二乘拟合来定义,对于离判别边界更近的点系数更大.

当数据不可分时,该问题没有可行解,需要另外的构造.同样我们可以利用基变换来扩大空间,但是这个可能导致通过过拟合进行人工分离.在第 12 章中我们将要讨论更加吸引人的方法,被称为支持向量机 (support vector machine),它允许重叠,但是最小化了某种度量下的重叠.

  1. Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage and organization in the brain, Psychological Review 65: 386–408. ↩︎

  2. Ripley, B. D. (1996). Pattern Recognition and Neural Networks, Cambridge University Press. ↩︎

  3. Vapnik, V. (1996). The Nature of Statistical Learning Theory, Springer, New York. ↩︎

  • 点赞
  • 收藏
  • 分享
  • 文章举报
Nstar-LDS 发布了42 篇原创文章 · 获赞 58 · 访问量 6906 私信 关注
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: