您的位置:首页 > 编程语言 > Java开发

深入浅出Java虚拟机

2020-02-08 02:29 726 查看

1.Java内存区域与内存溢出异常

运行时数据区域

Java虚拟机在执行Java程序的过程中,会把它管理的内存划分为若干个不同的数据区域。这些区域有各自的用途,以及创建和销毁的时间,有的区域随着虚拟机进程的启动而存在,有些区域则依赖用户线程的启动和结束而建立和销毁。

  1. 程序计数器
    程序计数器(Program Counter Register)是一块较小的内存空间,它可以看作是当前线程所执行的字节码的行号指示器。在虚拟机的概念模型里,字节码解释器工作时就是通过改变这个计数器的值来选取下一条需要执行的字节码指令,分支、循环、跳转、异常处理、线程恢复等基础功能都需要依赖这个计数器来完成。
    由于Java虚拟机的多线程是通过线程轮流切换并分配处理器执行时间的方式来实现的,在任何一个确定的时刻,一个处理器(对于多核处理器来说是一个内核)都只会执行一条线程中的指令。因此,为了线程切换后能恢复到正确的执行位置,每条线程都需要有一个独立的程序计数器,各条线程之间计数器互不影响,独立存储,这类内存区域为”线程私有“的内存。
    如果线程正在执行的是一个Java方法,这个计数器记录的是正在执行的虚拟机字节码指令的地址:如果正在执行的是Native方法,这个计数器值则为空(Undefined),此内存区域是唯一一个在Java虚拟机规范中没有规定任何OutOfMemoryError情况的区域。
  2. Java虚拟机栈
    与程序计数器一样,Java虚拟机栈(Java Virtual Machine Stacks)也是线程私有的,它的生命周期与线程相同。虚拟机栈描述的是Java方法执行的内存模型:每个方法在执行的同时都会创建一个栈帧(Stack Frame)用于存储局部变量表、操作数栈、动态链接、方法出口等信息。每一个方法从调用直至执行完成的过程,就对应着一个栈帧在虚拟机栈中入栈到出栈的过程。
  3. 本地方法栈
    本地方法栈(Native Method Stack)与虚拟机栈所发挥的作用是非常相似的,它们之间的区别不过是虚拟机栈为虚拟机执行Java方法服务,而本地方法栈则为虚拟机使用的Native方法服务。
  4. Java堆
    Java堆是被所有线程共享的一块内存区域,在虚拟机启动时创建。此内存区域的唯一目的就是存放对象实例,几乎所有的对象实例都在这里分配内存。
  5. 方法区
    方法区(Method Area)与Java堆一样,是各个线程共享的内存区域,它用于存储已被虚拟机加载的类信息、常量、静态变量、即时编译器后的代码等数据。虽然Java虚拟机规范把方法区描述为堆的一个逻辑部分,但是它却有一个别名叫做Non-Heap(非堆),目的应该是与Java堆区分开来。
  6. 运行时常量池
    运行时常量池(Runtime Constant Pool)是方法区的一部分。Class文件中除了有类的版本、字段、方法、接口等描述信息外,还有一项信息是常量池(Constant Pool Table),用于存放编译期生成的各种字面量和符号引用。这部分内容将在类加载后进入方法区的运行时常量池中存放。
    运行时常量池相对于Class文件常量池的另外一个重要特征时具备动态性,Java语言并不要求常量一定只有编译期才能产生,也就是并非预置入Class文件中常量池的内容才能进入方法区运行时常量池,比如String类的intern()方法。
  7. 直接内存
    直接内存(Direct Memory)并不是虚拟机运行时数据区的一部分,也不是Java虚拟机规范中定义的内存区域。
对象
  1. 对象的创建
    在语言层面上,创建对象(例如克隆、反序列化)通常仅仅是一个new关键字而已,而在虚拟机中,遇到一条new指令时,首先将去检查这个符号引用代表的类是否已被加载、解析和初始化过。如果没有,那必须先执行相应的类加载过程。
    在类加载检查通过后,接下来虚拟机将为新生对象分配内存。对象所需内存的大小在类加载完成后便可完全确定,为对象分配空间的任务等同于把一块确定大小的内存从Java堆中划分出来。
    内存分配完成后,虚拟机需要将分配到的内存空间都初始化为零值(不包括对象头)。
    接下来,虚拟机要对对象进行必要的设置,例如这个对象时哪个类的实例、如何才能找到类的元数据信息、对象的哈希码、对象的GC分代年龄等信息。这些信息存放在对象的对象头之中。根据虚拟机当前的运行状态的不同,如是否启用偏向锁等,对象头会有不同的设置方式。
    在上面的工作都完成之后,从虚拟机的视角来看,一个新的对象已经产生了,但从Java程序的视角来看,对象创建才刚刚开始–<init>方法,还没有执行,所有的字段都还为零。所以,一般来说,执行new指令之后会接着执行<init>方法,把对象按照程序员的意愿进行初始化,这样一个真正可用的对象才算完全产生出来。
  2. 对象的内存布局
    在HotSpot虚拟机中,对象在内存中存储的布局可以分为3块区域:对象头(Header)、实例数据(Instance Data)和对齐填充(Padding)。
    HotSpot虚拟机的对象头包括两部分信息,第一部分用于存储对象自身的运行时数据,如哈希码(HashCode)、GC分代年龄、锁状态标志、线程持有的锁、偏向线程ID、偏向时间戳等。
    对象头的另外一部分时类型指针,即对象指向它的类元数据的指针,虚拟机通过这个指针来确定这个对象是哪个类的实例。如果对象是一个Java数组,那在对象头中还必须由一块用于记录数组长度的数据,因为虚拟机可以通过普通Java对象的元数据信息去确定Java对象的大小,但是从数组的元数据中无法确定数组的大小。
    接下来的实例数据部分是对象真正存储的有效信息,也是在程序代码中所定义的各种类型的字段内容。无论是从父类继承下来的,还是在子类中定义的,都需要记录起来。这部分的存储顺序会受到虚拟机分配策略参数和字段在Java源码中定义顺序的影响。
    第三部分对齐填充并不是必然存在的,也没有特别的含义,它仅仅起着占位符的作用。由于HotSpot VM的自动内存管理系统要求对象起始地址必须是8字节的整数倍,换句话说,就是对象的大小必须是8字节的整数倍。而对象头部分正好是8字节的倍数,因此,当对象实例数据部分没有对齐时,就需要通过对齐填充来补全。
  3. 对象的访问定位
    建立对象是为了使用对象,我们的Java程序需要通过栈上的reference数据来操作堆上的具体对象。由于reference类型在Java虚拟机规范中只规定了一个指向对象的引用,并没有定义这个引用应该通过何种方式去定位、访问堆中的对象的具体位置,所以对象访问方式也是取决于虚拟机实现而定的。目前主流的访问方式有使用句柄和直接指针两种。
    如果使用句柄访问的话,那么Java堆中将会划分出一块内存来作为句柄池,reference中存储的就是对象的句柄地址,而句柄中包含了对象实例数据与类型数据各自的具体地址信息,如图2-2所示。

    如果使用 直接指针访问,那么Java堆对象的布局中就必须考虑如何放置访问类型数据的相关信息,而reference中存储的直接就是对象地址,如图2-3所示。

    这两种对象访问方式各有优势,使用句柄来访问的最大好处就是reference中存储的是稳定的句柄地址,在对象被移动(垃圾收集时移动对象时非常普遍的行为)时只会改变句柄中的实例数据指针,而reference本身不需要修改。
    使用直接指针访问方式的最大好处就是速度更快,它节省了一次指针定位的时间开销,由于对象的访问在Java中非常频繁,因此这类开销积少成多也是一项非常可观的执行成本。

2.垃圾收集器与内存分配策略

  1. 引用计数算法
    给对象中添加一个引用计数器,每当有一个地方引用它时,计数器值就加1;当引用失效时,计数器值就减1;任何时刻计数器为0的对象都是不可能在被使用的。
    客观地说,引用计数算法(Reference Counting)的实现简单,判定效率也很高,在大部分情况下它都是一个不错的算法,但是它很难解决对象之间相互遵循引用的问题。
    对象objA和objB都有字段instance,赋值令objA.instance = objB及objB.instance = objA,除此之外,这两个对象再无任何引用,实际上这两个对象已经不可能再被访问,但是它们因为互相引用着对方,导致它们的引用计数都不为0,于是引用计数算法无法通知GC收集器回收它们。

  2. 可达性分析算法
    通过一系列的称为“GC Roots"的对象作为起始点,从这些节点开始向下搜索,搜索所走过的路径称为引用链(Reference Chain),当一个对象到GC Roots没有任何引用链相连时,则证明此对象是不可用的。

    在Java语言中,可作为GC Roots的对象包括下面几种:
    虚拟机栈(栈帧中的本地变量表)中引用的对象。
    方法区中类静态属性引用的对象。
    方法区中常量引用的对象。
    本地方法栈中JNI(Native方法)引用的对象。

  3. 再谈引用
    无论是通过引用计数算法判断对象的引用数量,还是通过可达性分析算法判断对象的引用链是否可达,判定对象是否存活都与“引用”有关。引用传统的定义:如果reference类型的数据中存储的数值代表的是另外一块内存的起始地址,就称这块内存代表着一个引用。这种定义很纯粹,但是太过狭隘,一个对象在这种定义下只有被引用或者没有被引用两种状态,对于如何描述一些“食之无味,弃之可惜”的对象就显得无能为力。我们希望能描述这样一类对象:当内存空间还足够时,则能保留在内存之中;如果内存空间在进行垃圾收集后还是非常紧张,则可以抛弃这些对象。
    对引用的概念进行扩充,将引用分为强引用(Strong Reference)、软引用(Soft Reference)、弱引用(Weak Reference)、虚引用(Phantom Reference)4种,这4种引用强度依次逐渐减弱。
    强引用就是指在程序代码之中普遍存在的,类似“Object obj = new Object()"这类的引用,只要强引用还存在,垃圾收集器永远不会回收掉被引用的对象。
    软引用是用来描述一些还有用但并非必需的对象。对于软引用关联着的对象,在系统将要发生内存溢出异常之前,将会把这些对象列进回收范围之中进行第二次回收。
    弱引用也是用来描述非必需对象的,但是它的强度比较引用更弱一些,被弱引用关联的对象只能生存到下一次垃圾收集发生之前。无论当前内存是否足够,都会回收掉只被弱引用关联的对象。
    虚引用也成为幽灵引用或者幻影引用,他是最弱的一种引用关系。一个对象是否有虚引用的存在,完全不会对其生存时间构成影响,也无法通过虚引用来取得一个对象实例。为一个对象设置虚引用关联的唯一目的就是能在这个对象被收集器回收时收到一个系统通知。

  4. finalize()方法:
    要真正宣告一个对象死亡,至少要经历两次标记过程:如果对象在进行可达性分析后发现没有与GCRoots相连接的引用链,那它将会被第一次标记并且进行一次筛选,筛选的条件是此对象是否有必要执行finalize()方法。当对象没有覆盖finalize()方法,或者finalize()方法已经被虚拟机调用过,虚拟机将这两种情况都视为“没有必要执行”。如果这个对象被判定为有必要执行finalize()方法,那么这个对象将会放置在一个叫做F-Queue的队列之中,并在稍后由一个由虚拟机自动建立的、低优先级的Finalizer线程去执行它。这里所谓的“执行”是指虚拟机会触发这个方法,但并不承诺会等待它运行结束,这样做的原因是,如果一个对象在finalize()方法中执行缓慢,或者发生了死循环(更极端的情况),将很可能会导致F-Queue队列中其他对象永远处于等待,甚至导致整个内存回收系统崩溃。finalize()方法是对象逃脱死亡命运的最后一次机会,稍后GC将对F-Queue中的对象进行第二次小规模的标记,如果对象要在finalize()中成功拯救自己–只要重新与引用链上的任何一个对象建立关联即可,譬如把自己(this关键字)赋值给某个类变量或者对象的成员变量,那在第二次标记时它将被移除出“即将回收”的集合;如果对象这时候还没有逃脱,那基本上它就真的被回收了。任何一个对象的finalize()方法都只会被系统自动调用一次,如果对象面临下一次回收,它的finalize()方法不会被再次执行。

  5. 回收方法区
    永久代的垃圾收集主要回收两部分内容:废弃变量和无用的类。回收废弃变量与囧事精辟Java堆中的对象非常类似。判定一个常量是否是“废弃常量”比较简单,而要判定一个类是否是“无用的类”的条件则相对苛刻许多。类需要同时满足下面3个条件才能算是“无用的类”:
    该类所有的实例都已经被回收,也就是Java堆中不存在该类的任何实例。
    加载该类的ClassLoader已经被回收。
    该类对应的java.lang.Class对象没有在任何地方被引用,无法在任何地方通过反射访问该类的方法。
    虚拟机可以对满足上述3个条件的无用类进行回收,这里说的仅仅是“可以”,而并不是和对象一样,不使用了就必然会回收。
    在大量使用反射、动态代理、CGLib等ByteCode框架、动态生成JSP以及OSGi这类频繁自定义ClassLoader的场景都需要虚拟机具备类卸载的功能,以保证永久代不会溢出。

  6. 垃圾收集算法
    6.1 标记-清除算法:
    最基础的收集算法是“标记-清除”(Mark-Sweep)算法,如同它的名字一样,算法分为“标记”和“清除”两个阶段:首先标记出所有需要回收的对象,在标记完成后统一回收所有被标记的对象。
    它的主要不足有两个:一个是效率问题,标记和清除两个过程的效率都不高;另一个是空间问题,标记清除之后会产生大量不连续的内存碎片,空间碎片太多可能会导致以后在程序运行过程中需要分配较大对象时,无法找到足够的连续内存而不得不提前触发另一次垃圾收集动作。

    6.2 复制算法:
    为了解决效率问题,一种称为"复制”(Copying)的收集算法出现了,它将可用内存按容量划分为大小相等的两块,每次只使用其中的一块。当这一块的内存用完了,就将还存活着的对象复制到另外一块上面,然后再把已使用的内存空间一次清理掉。这样使得每次都是对整个半区进行内存回收,内存分配时也就不用考虑内存碎片等复杂情况,只要移动堆顶指针,按顺序分配内存即可,实现简单,运行高效,只是这种算法的代价是将内存缩小为了原来的一半。
    现在的商业虚拟机都采用这种收集算法来回收新生代,但并不需要按照1:1的比例来划分内存空间,而是将内存分为一块较大的Eden空间和两块较小的Survivor空间,每次使用Eden和其中一块Survivor。当回收时,将Eden和Survivor中还存活着的对象一次性地复制到另外一块Survivor空间上,最后清理掉Eden和刚才用过的Survivor空间。HotSpot虚拟机默认Eden和Survivor的大小比例是8:1,也就是每次新生代中可用内存空间为整个新生代容量的90%(80%+10%),只有10%的内存会被“浪费”。当然,我们没有办法保证每次回收都只有不多于10%的对象存活,当Survivor空间不够用时,需要依赖其他内存(这里指老年代)进行分配担保(Handle Promotion)。

    6.3 标记-整理算法:
    复制收集算法在对象存活率较高时就要较多的复制操作,效率将会变低。更关键的是,如果不想浪费50%的空间,就需要有额外的空间进行分配担保,以应对被使用的内存中所有对象都100%存活的极端情况,所以在老年代一般不能直接选用这种算法。
    标记过程仍然与”标记-整理“(Mark-Compact)算法,但后续步骤不是直接对可回收对象进行清理,而是让所有存活的对象都向一端移动,然后直接清理掉端边界意外的内存。

    6.4 分代收算法:
    当前商业虚拟机的垃圾收集都采用“分代收集”(Generational Collection)算法,根据对象存活周期的不同将内存划分为几块。一般是把Java堆分为新生代和老生代,这样就可以根据各个年代的特点采用最适当的收集算法。

  7. HotSpot的算法实现
    7.1 枚举根节点:
    从可达性分析中从GC Roots节点找引用链这个操作为例,可作为GC Roots的节点主要在全局性的引用(例如常量或类静态属性)与执行上下文(例如栈帧中的本地变量表)中,现在很多应用仅仅方法区就有数百兆,如果要逐个检查这里面的引用,那么必然会消耗很多时间。
    另外,可达性分析对执行时间的敏感还体现在GC停顿上,因为这项分析工作必须在一个能确保一致性的快照中进行–这里”一致性“的意思是指在整个分析期间整个执行系统看起来就像被冻结在某个时间上,不可以出现分析过程中对象引用关系还在不断变化的情况,该点不满足的话分析结果准确性就无法得到保证。
    由于目前的主流Java虚拟机使用的都是准确式GC,所以当执行系统停顿下来后,并不需要一个不漏地检查完所有执行上下文和全局地引用位置,虚拟机应当是有办法直接得知哪些地方存放着对象引用。在HotSpot地实现中,是使用一组称为OopMap地数据结构来达到这个目的的,在类加载完成的时候,HotSpot就把对象内什么偏移量上是什么类型的数据计算出来,在JIT编译过程中,也会在特定的位置记录下栈和寄存器中哪些位置是引用。
    7.2 安全点:
    在OopMap的协助下,HotSpot可以快速且准确地完成GC Roots枚举,但一个很现实的问题随之而来:可能导致引用关系变化,或者说OopMap的内容变化的指令非常多,如果为每一条指令都生成对应的OopMap,那将会需要大量的额外空间,这样GC的空间成本将会变得很高。
    程序执行时并非在所有地方都能停顿下来开始GC,只有在到达安全点(Safepoint)时才能暂停。Safepoint的选定既不能太少以致于让GC等待时间太长,也甭能过于频繁以致于过分增大运行时的负荷。所以,安全点的选定基本上是以程序”是否具有让程序长时间执行的特征“为标准进行选定的–因为每条执行的时间都非常短暂,程序不太可能因为指令流太长这个原因而过长时间运行,”长时间执行“的最明显特征就是指令序列复用。例如方法调用、循环跳转、异常跳转等,所以具有这些功能的指令才会产生Safepoint。
    对于Safepoint,另一个需要考虑的问题是如何在GC发生时让所有线程都”跑“到最近的安全点上再停顿下来。这里有两种方案可供选择:抢占式中断(Preemptive Suspension)和主动式中断(Voluntary Suspension),其中抢先式中断不需要线程的执行代码主动区配合,在GC发生时,首先把所有线程全部中断,如果发现有线程中断的地方不在安全点上,就恢复线程,让它”跑“到安全点上。现在几乎没有虚拟机实现采用抢先式中断来暂停线程从而响应GC事件。
    而主动式中断的思想是当GC需要中断线程的时候,不直接对线程操作,仅仅简单地设置一个标志,各个线程执行时主动去轮询这个标志,发现中断标志为真时就自己中断挂起。轮询标志的地方和安全点是重合的,另外再加上创建对象需要分配内存的地方。
    7.3 安全区域:
    使用Safepoint似乎已经完美地解决了如何进入GC的问题,但实际情况却不一定。Safepoint机制保证了程序执行时,在不太长的时间内就会遇到可进入GC的Safepoint,但是,程序”不执行“的时候呢?所谓的程序不执行就是没有分配CPU时间,典型的例子就是线程处于Sleep状态或者Blocked状态,这时候线程无法响应JVM的中断请求,”走“到安全的地方去中断挂起,JVM也显然不太可能等待线程重新被分配CPU时间。对于这种情况,就需要安全区域(Safe Region)来解决。
    安全区域是指在一段代码片段之中,引用关系不会发生变化。在这个区域中的任意地方开始GC都是安全的,我们也可以把Safe Region看做是被扩展的Safepoint。
    在线程执行到Safe Region中的代码时,首先标识自己已经进入了Safe Region,那样,当在这段时间里JVM要发起GC时,就不用管标识自己为Safe Region状态的线程了。在线程要离开Safe Region时,它要检查系统是否已经完成了根节点枚举(或者时整个GC过程),如果完成了,那线程就继续执行,否则它就必须等待直到收到可以安全离开Safe Region的信号为止。

  8. 垃圾收集器

  9. 内存分配与回收策略
    Java技术体系中所提倡的自动内存管理最终可以归结为自动化地解决了两个问题:给对象分配内存以及回收分配给对象的内存。
    对象的内存分配,往大方向讲,就是在堆上分配,对象主要分配在新生代的Eden区上,如果启动了本地线程分配缓冲,将按线程优先在TLAB(线程本地分配缓存区)上分配。少数情况下也可能会直接分配在老年代中,分配的规则并不是百分之百固定的,其细节取决于当前使用的是哪一种垃圾收集器组合,还有虚拟机中与内存相关的参数的设置。
    9.1 对象优先在Eden分配:
    大多数情况下,对象在新生代Eden区中分配,当Eden区没有足够空间进行分配时,虚拟机将发起一次Minor GC。
    9.2 大对象直接进入老年代:
    所谓的大对象是指,需要大量连续内存空间的Java对象,最典型的大对象就是那种很长的字符串以及数组。大对象对虚拟机的内存分配来说就是一个坏消息,尤其是朝生夕灭的短命大对象,经常出现大对象容易导致内存还有不少空间就提前触发垃圾收集以获取足够的连续空间来安置它们。
    9.3 长期存活的对象将进入老年代:
    既然虚拟机采用了分代收集的思想来管理内存,那么内存回收时就必须能识别哪些对象应该放在新生代,哪些对象应放在老年代中。为了做到这点,虚拟机给每个对象定义了一个对象年龄(Age)计数器。如果对象在Eden出生并经过第一次MinorGC后仍然存活,并且能被Survivor容纳的话,将被移动到Survivor空间中,并且对象年龄设为1.对象在Survivor区中每熬过一次Minor GC,年龄就增加1岁,当它的年龄增加到一定程度(默认为15岁),就将会被晋升到老年代中。
    9.4 动态对象年龄判定:
    为了能更好地适应不同程序地内存状况没虚拟机并不是永远地要求对象地年龄必须达到了MaxTenuringThreshold才能晋升老年代,如果在Survivor空间中相同年龄所有对象大小地总和大于Survivor空间的一半,年龄大于或等于该年龄的对象就可以直接进入老年代,无需等到MaxtenuringThreshold中要求的年龄。
    9.5 空间分配担保:
    在发生Minor GC之前,虚拟机会先检查老年代最大可用的连续空间是否大于新生代所有对象总空间,如果这个条件成立,那么Minor GC可以确保是安全的。如果不成立,则虚拟机会查看HandlePromotionFailure设置值是否允许担保失败。如果允许,那么继续检查老年代最大可用的连续空间是否大于历次晋升到老年代对象的平均大小,如果大于,将尝试着进行一次Minor GC,尽管这次Minor GC是有风险的;如果小于,或者HandlePromotionFailure设置不允许冒险,那这时也要改为进行一次Full GC。如果出现担保失败,那就只好在失败后重新发起一次Full GC。

  10. 虚拟机性能监控与故障处理工具

  11. 调优案例分析与实践

  12. 类文件结构

  13. 虚拟机类加载机制
    虚拟机把描述类的数据从Class文件加载到内存,并对数据进行检验、转换解析和初始化,最终形成可以被虚拟机直接使用的Java类型,这就是虚拟机的类加载机制。
    在Java语言里面,类型的加载、连接和初始化过程都是在程序运行期间完成的,这种策略虽然会令类加载时稍微增加一些性能开销,但是会为Java应用程序提供高度的灵活性,Java里天生可以动态扩展的语言特性就是依赖运行期动态加载和动态连接这个特点实现的。
    13.1 类加载的时机:
    类从被加载到虚拟机内存中开始,到卸载出内存为止,它的整个生命周期包括:加载(Loading)、验证(verification)、准备(Preparation)、解析(Resolution)、初始化(Initialization)、使用(Using)和卸载(Unloading)7个阶段。其中验证、准备、解析3个部分统称为连接(Linking),这7个阶段的发生顺序如图所示:

    加载、验证、准备、初始化和卸载这5个阶段的顺序是不确定的,类的加载过程必须按照这种顺序按部就班地开始,而解析阶段则则不一定:它在某些情况下可以在初始化阶段之后再开始,这是为了支持Java语言的运行时绑定(也称为动态绑定和晚期绑定)。注意,这里笔者写的是按部就班地开始,而不是按部就班地进行或完成,强调这点是因为这些阶段通常都是互相交叉地混合进行地,通常会在一个阶段执行的过程中调用,激活另外一个阶段。
    什么情况下需要开始类加载过程的第一个阶段:加载?Java虚拟机规范中并没有进行强制约束,这点可以交给虚拟机的具体实现来自由掌握。但是对于初始化阶段,虚拟机规范则是严格规定了有且仅有5种情况必须立即对类进行“初始化”(而加载、验证、准备自然需要在此之前开始):
    1) 遇到new、getstatic、putstatic或invokestatic这4条字节码指令时,如果类没有进行过初始化,则需要先触发其初始化。生成这4条指令的最常见的Java代码场景是:使用new关键词实例化对象的时候、读取或设置一个类的静态字段(被final修饰、已在编译期把结果放入常量池的静态字段除外)的时候,以及调用一个类的静态方法的时候。
    2) 使用Java.lang.reflect包的方法对类进行反射调用的时候,如果类没有进行过初始化,则需要先触发其初始化。
    3) 当初始化一个类的时候,如果发现其父类还没有进行过初始化,则需要先触发其父类的初始化。
    4) 当虚拟机启动时,用户需要指定一个要执行的主类(包含main()方法的那个类),虚拟机会先初始化这个主类。
    5) 当使用JDK1.7的动态语言支持时,如果一个java.lang.invoke.MethodHandle实例最后的解析结果REF_getStatic、REF_putStatic、REF_invokeStatic的方法句柄,并且这个方法句柄所对应的类没有进行过初始化,则需要先触发其初始化。
    对于这5种会触发类进行初始化的场景,虚拟机规范中使用了一个很强烈的限定语:"有且仅有“,这5种场景中的行为称为一个类进行主动引用。除此之外,所有引用类的方式都不会触发初始化,称为被动初始化。
    13.2 类加载的过程
    加载:
    加载是类加载(Class Loading)过程的一个阶段,在加载阶段,虚拟机需要完成以下3件事情:
    1) 通过一个类的全限定名来获取定义此类的二进制字节流。
    2) 将这个字节流所代表的静态存储结构转化为方法区的运行时数据结构。
    3) 在内存中生成一个代表这个类的java.lang.Class对象,作为方法区这个类的各种数据的访问入口。
    虚拟机规范的这3点要求其实并不算具体,因此虚拟机实现与具体应用的灵活度就是相当大的。
    验证:
    验证是连接阶段的第一步,这一阶段的目的是为了确保Class文件的字节流中包含的信息符合当前虚拟机的要求,并且不会危害虚拟机自身的安全。
    验证阶段大致上会完成4个阶段的验证动作:
    文件格式验证:
    第一阶段要验证字节流是否符合Class文件格式的规范,并且能被当前版本的虚拟机处理。
    元数据验证:
    第二阶段是对字节码描述的信息进行语义分析,以保证其描述的信息符合Java语言规范的要求。
    字节码验证:
    第三阶段是整个验证过程中最复杂的一个阶段,主要目的是通过数据流和控制流分析,确定程序语义是合法的、符合逻辑的。在第二阶段对元数据信息中的数据类型做完校验后,这个阶段将对类的方法体进行校验分析,保证被校验类的方法在运行时不会做出危害虚拟机安全的事件。
    符号引用验证:
    最后一个阶段的校验发生在虚拟机将符号引用转化为直接引用的时候,这个转化动作将在连接的第三阶段–解析阶段中发生。符号引用验证可以看做是对类自身以外(常量池中的各种符号引用)的信息进行匹配性检验,通常需要检验下列内容:
    符号引用中通过字符串描述的全限定名是否能找到对应的类。
    在指定类中是否存在符合方法的字段描述符以及简单名称所描述的方法和字段。
    符号引用中的类、字段、方法和访问性(private、protected、public、default)是否可被当前类访问。
    13.3 准备
    准备阶段是正式为类变量分配内存并设置类变量初始值的阶段,这些变量所使用的内存都将在方法区中进行分配。这个阶段中有两个容易产生混淆的概念需要强调以下,首先,这时候进行内存分配的仅包含类变量(被static修饰的变量),而不包括实例变量,实例变量将会在对象实例化时随着对象一起分配在Java堆中。其次,这里所说的初始值“通常情况”下是数据类型的零值。假设一个类变量的定义为:
    public static int value = 123;
    那变量value在准备阶段过后的初始值为0而不是123,因为这时候尚未开始执行任何Java方法,而把value赋值为123的putstatic指令是程序被编译后,存放于类构造器<clinit>()方法之中,所以把value赋值为123的动作将在初始化阶段才会执行。

数据类型 零值
int 0
long 0L
short (short) 0
char ‘\u0000’
byte (byte) 0
boolean false
float 0.0f
double 0.0d
refernce null

在通常情况下,初始值是零值,相对的会有一些特殊情况:如果类字段的字段属性表中存在ConstantValue属性,那在准备阶段变量value就会被初始化为ConstantValue属性所指定的值,假设上面类变量value的定义变为:
public static final int value = 123;
编译时javac将会为value生成ConstantValue属性,在准备阶段虚拟机会根据ConstantValue的设置将value赋值为123。

解析:

  • 点赞
  • 收藏
  • 分享
  • 文章举报
qq_30008415 发布了9 篇原创文章 · 获赞 0 · 访问量 276 私信 关注
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: