您的位置:首页 > 编程语言 > Python开发

win10+Python3.7.3+OpenCV3.4.1入门学习(十四 傅里叶变换)————14.2 Numpy实现傅里叶变换

2020-01-12 11:02 489 查看

Python版本是Python3.7.3,OpenCV版本OpenCV3.4.1,开发环境为PyCharm

14.2 Numpy实现傅里叶变换

Numpy模块提供了傅里叶变换功能,Numpy模块中的fft2()函数可以实现图像的傅里叶变换。本节介绍如何用Numpy模块实现图像的傅里叶变换,以及在频域内过滤图像的低频信息,保留高频信息,实现高通滤波。

14.2.1 实现傅里叶变换

Numpy提供的实现傅里叶变换的函数是numpy.fft.fft2(),它的语法格式是:

返回值 = numpy.fft.fft2(原始图像)

这里需要注意的是,参数“原始图像”的类型是灰度图像,函数的返回值是一个复数数组(complex
ndarray)。
经过该函数的处理,就能得到图像的频谱信息。此时,图像频谱中的零频率分量位于频谱图像(频域图像)左上角,为了便于观察,通常会使用numpy.fft.fftshift()函数将零频率成分移动到频域图像的中心位置,如下图所示。

函数numpy.fft.fftshift()的语法格式是:

返回值=numpy.fft.fftshift(原始频谱)

使用该函数处理后,图像频谱中的零频率分量会被移到频域图像的中心位置,对于观察傅里叶变换后频谱中的零频率部分非常有效。
对图像进行傅里叶变换后,得到的是一个复数数组。为了显示为图像,需要将它们的值调整到[0, 255]的灰度空间内,使用的公式为:

像素新值=20*np.log(np.abs(频谱值))

eg1:用Numpy实现傅里叶变换,观察得到的频谱图像。
根据题目要求,编写代码如下:

import cv2
import numpy as np
import matplotlib.pyplot as plt
img = cv2.imread('image\\lena.bmp',0)
f = np.fft.fft2(img)
fshift = np.fft.fftshift(f)
magnitude_spectrum = 20*np.log(np.abs(fshift))
plt.subplot(121)
plt.imshow(img, cmap = 'gray')
plt.title('original')
plt.axis('off')
plt.subplot(122)
plt.imshow(magnitude_spectrum, cmap = 'gray')
plt.title('result')
plt.axis('off')
plt.show()

运行上述程序,会显示原始图像和其频谱图像,如下图所示。

14.2.2 实现逆傅里叶变换

需要注意的是,如果在傅里叶变换过程中使用了numpy.fft.fftshift()函数移动零频率分量,那么在逆傅里叶变换过程中,需要先使用numpy.fft.ifftshift()函数将零频率分量移到原来的位置,再进行逆傅里叶变换,该过程如下图所示。

函数numpy.fft.ifftshift()是numpy.fft.fftshift()的逆函数,其语法格式为:

调整后的频谱 = numpy.fft.ifftshift(原始频谱)

numpy.fft.ifft2()函数可以实现逆傅里叶变换,返回空域复数数组。它是numpy.fft.fft2()的逆函数,该函数的语法格式为:

返回值=numpy.fft.ifft2(频域数据)

函数numpy.fft.ifft2()的返回值仍旧是一个复数数组(complex ndarray)。
逆傅里叶变换得到的空域信息是一个复数数组,需要将该信息调整至[0, 255]灰度空间内,使用的公式为:

img = np.abs(逆傅里叶变换结果)

eg2:在Numpy内实现傅里叶变换、逆傅里叶变换,观察逆傅里叶变换的结果图像。
代码如下:

import cv2
import numpy as np
import matplotlib.pyplot as plt
img = cv2.imread('image\\boat.bmp',0)
f = np.fft.fft2(img)
fshift = np.fft.fftshift(f)
ishift = np.fft.ifftshift(fshift)
iimg = np.fft.ifft2(ishift)
#print(iimg)
iimg = np.abs(iimg)
#print(iimg)
plt.subplot(121),plt.imshow(img, cmap = 'gray')
plt.title('original'),plt.axis('off')
plt.subplot(122),plt.imshow(iimg, cmap = 'gray')
plt.title('iimg'),plt.axis('off')
plt.show()

运行上述程序代码,会显示原始图像,以及对其先后进行傅里叶变换、逆傅里叶变换而得到的结果图像,如下图所示。

14.2.3 高通滤波示例

在一幅图像内,同时存在着高频信号和低频信号。
● 低频信号对应图像内变化缓慢的灰度分量。例如,在一幅大草原的图像中,低频信号对应着颜色趋于一致的广袤草原。
● 高频信号对应图像内变化越来越快的灰度分量,是由灰度的尖锐过渡造成的。如果在上面的大草原图像中还有一头狮子,那么高频信号就对应着狮子的边缘等信息。
滤波器能够允许一定频率的分量通过或者拒绝其通过,按照其作用方式可以划分为低通滤波器和高通滤波器。
● 允许低频信号通过的滤波器称为低通滤波器。低通滤波器使高频信号衰减而对低频信号放行,会使图像变模糊。
● 允许高频信号通过的滤波器称为高通滤波器。高通滤波器使低频信号衰减而让高频信号通过,将增强图像中尖锐的细节,但是会导致图像的对比度降低。
傅里叶变换可以将图像的高频信号和低频信号分离。在对图像的高频或低频信号进行处理后,再进行逆傅里叶变换返回空域,就完成了对图像的频域处理。通过对图像的频域处理,可以实现图像增强、图像去噪、边缘检测、特征提取、压缩和加密等操作。
例如,在下图中,左图original是原始图像,中间的图像result是对左图original进行傅里叶变化后得到的结果,右图则是对result进行高通滤波后的结果。将傅里叶变换结果图像result中的低频分量值都替换为0(处理为黑色),就屏蔽了低频信号,只保留高频信号,实现高通滤波。

要将图中右图中间的像素值都置零,需要先计算其中心位置的坐标,然后选取以该坐标为中心,上下左右各30个像素大小的区域,将这个区域内的像素值置零。该滤波器的实现方法为:

rows, cols = img.shape
crow, ccol = int(rows/2) , int(cols/2)
fshift[crow-30:crow+30, ccol-30:ccol+30] = 0

eg3:在Numpy内对图像进行傅里叶变换,得到其频域图像。然后,在频域内将低频分量的值处理为0,实现高通滤波。最后,对图像进行逆傅里叶变换,得到恢复的原始图像。观察傅里叶变换前后图像的差异。
代码如下:

import cv2
import numpy as np
import matplotlib.pyplot as plt
img = cv2.imread('image\\lena.bmp',0)
f = np.fft.fft2(img)
fshift = np.fft.fftshift(f)
rows, cols = img.shape
crow,ccol = int(rows/2) , int(cols/2)
fshift[crow-30:crow+30, ccol-30:ccol+30] = 0
ishift = np.fft.ifftshift(fshift)
iimg = np.fft.ifft2(ishift)
iimg = np.abs(iimg)
plt.subplot(121),plt.imshow(img, cmap = 'gray')
plt.title('original'),plt.axis('off')
plt.subplot(122),plt.imshow(iimg, cmap = 'gray')
plt.title('iimg'),plt.axis('off')
plt.show()

运行上述代码后,得到如下图所示的傅里叶变换对比图。从图中可以看到,经过高通滤波后,图像的边缘信息得以保留。

  • 点赞
  • 收藏
  • 分享
  • 文章举报
菩提树下祈愿少年 发布了116 篇原创文章 · 获赞 23 · 访问量 2013 私信 关注
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: