您的位置:首页 > 职场人生

算法学习?挑战高薪的必经之路!让面试官满意的排序算法(图文解析)

2020-01-06 22:11 946 查看

让面试官满意的排序算法(图文解析)

  • 这种排序算法能够让面试官面露微笑
  • 这种排序算法集各排序算法之大成
  • 这种排序算法逻辑性十足
  • 这种排序算法能够展示自己对Java底层的了解

    这种排序算法出自Vladimir Yaroslavskiy、Jon Bentley和Josh Bloch三位大牛之手,它就是JDK的排序算法——java.util.DualPivotQuicksort(双支点快排)

想看以往学习内容的朋友
可以看我的GitHub:https://github.com/Meng997998/AndroidJX

觉得文章枯燥的朋友,可以看视频学习

DualPivotQuicksort

先看一副逻辑图(如有错误请大牛在评论区指正)

插排指的是改进版插排—— 哨兵插排

快排指的是改进版快排—— 双支点快排

DualPivotQuickSort没有Object数组排序的逻辑,此逻辑在Arrays中,好像是归并+Tim排序

图像应该很清楚:对于不同的数据类型,Java有不同的排序策略:

  • byte、short、char 他们的取值范围有限,使用计数排序占用的空间也不过256/65536个单位,只要排序的数量不是特别少(有一个计数排序阈值,低于这个阈值的话就没有不要用空间换时间了),都应使用计数排序
  • int、long、float、double 他们的取值范围非常的大,不适合使用计数排序
  • float和double他们又有特殊情况:

    NAN (not a number),NAN不等于任何数字,甚至不等于自己
  • +0.0,-0.0 ,float和double无法精确表示十进制小数,我们所看到的十进制小数其实都是取得近似值,因而会有+0.0(接近0的正浮点数)和-0.0(接近0的负浮点数),在排序流程中统一按0来处理,因而最后要调整一下-0.0和+0.0的位置关系
  • Object
  • 计数排序

    计数排序是以空间换时间的排序算法,它时间复杂度O(n),空间复杂度O(m)(m为排序数值可能取值的数量),只有在范围较小的时候才应该考虑计数排序

    (源码以short为例)

    int[] count = new int[NUM_SHORT_VALUES]; //1 << 16 = 65536,即short的可取值数量
    
    //计数,left和right为数组要排序的范围的左界和右界
    //注意,直接把
    for (int i = left - 1; ++i <= right;count[a[i] - Short.MIN_VALUE]++);
    
    //排序
    for (int i = NUM_SHORT_VALUES, k = right + 1; k > left; ) {
    while (count[--i] == 0);
    short value = (short) (i + Short.MIN_VALUE);
    int s = count[i];
    
    do {
    a[--k] = value;
    } while (--s > 0);
    }

    哨兵插排

    当数组元素较少时,时间O(n^2^)和O(log~n~)其实相差无几,而插排的空间占用率要少于快排和归并排序,因而当数组元素较少时(<插排阈值),优先使用插排

    哨兵插排是对插排的优化,原插排每次取一个值进行遍历插入,而哨兵插排则取两个,较大的一个(小端在前的排序)作为哨兵,当哨兵遍历到自己的位置时,另一个值可以直接从哨兵当前位置开始遍历,而不用再重头遍历

    只画了静态图,如果有好的绘制Gif的工具请在评论区告诉我哦

    我们来看一下源码:

    if (leftmost) {
    //传统插排(无哨兵Sentinel)
    //遍历
    //循环向左比较(<左侧元素——换位)-直到大于左侧元素
    for (int i = left, j = i; i < right; j = ++i) {
    int ai = a[i + 1];
    while (ai < a[j]) {
    a[j + 1] = a[j];
    if (j-- == left) {
    break;
    }
    }
    a[j + 1] = ai;
    }
    
    //哨兵插排
    } else {
    //如果一开始就是排好序的——直接返回
    do {
    if (left >= right) {
    return;
    }
    } while (a[++left] >= a[left - 1]);
    
    //以两个为单位遍历,大的元素充当哨兵,以减少小的元素循环向左比较的范围
    for (int k = left; ++left <= right; k = ++left) {
    int a1 = a[k], a2 = a[left];
    
    if (a1 < a2) {
    a2 = a1; a1 = a[left];
    }
    while (a1 < a[--k]) {
    a[k + 2] = a[k];
    }
    a[++k + 1] = a1;
    
    while (a2 < a[--k]) {
    a[k + 1] = a[k];
    }
    a[k + 1] = a2;
    }
    //确保最后一个元素被排序
    int last = a[right];
    
    while (last < a[--right]) {
    a[right + 1] = a[right];
    }
    a[right + 1] = last;
    }
    return;

    双支点快排

    重头戏:双支点快排!

    快排虽然稳定性不如归并排序,但是它不用复制来复制去,省去了一段数组的空间,在数组元素较少的情况下稳定性影响也会下降(>插排阈值 ,<快排阈值),优先使用快排

    双支点快排在原有的快排基础上,多加一个支点,左右共进,效率提升

    看图:

    1. 第一步,取支点

      注意:如果5个节点有相等的任两个节点,说明数据不够均匀,那就要使用单节点快排

    2. 快排

    源码(int为例,这么长估计也没人看)

    // Inexpensive approximation of length / 7
    // 快排阈值是286 其7分之一小于等于1/8+1/64+1
    int seventh = (length >> 3) + (length >> 6) + 1;
    
    // 获取分成7份的五个中间点
    int e3 = (left + right) >>> 1; // The midpoint
    int e2 = e3 - seventh;
    int e1 = e2 - seventh;
    int e4 = e3 + seventh;
    int e5 = e4 + seventh;
    
    // 保证中间点的元素从小到大排序
    if (a[e2] < a[e1]) {
    int t = a[e2]; a[e2] = a[e1]; a[e1] = t; }
    
    if (a[e3] < a[e2]) {
    int t = a[e3]; a[e3] = a[e2]; a[e2] = t;
    if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; }
    }
    if (a[e4] < a[e3]) {
    int t = a[e4]; a[e4] = a[e3]; a[e3] = t;
    if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t;
    if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; }
    }
    }
    if (a[e5] < a[e4]) {
    int t = a[e5]; a[e5] = a[e4]; a[e4] = t;
    if (t < a[e3]) { a[e4] = a[e3]; a[e3] = t;
    if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t;
    if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; }
    }
    }
    }
    
    // Pointers
    int less  = left;  // The index of the first element of center part
    int great = right; // The index before the first element of right part
    
    //点彼此不相等——分三段快排,否则分两段
    if (a[e1] != a[e2] && a[e2] != a[e3] && a[e3] != a[e4] && a[e4] != a[e5]) {
    /*
    * Use the second and fourth of the five sorted elements as pivots.
    * These values are inexpensive approximations of the first and
    * second terciles of the array. Note that pivot1 <= pivot2.
    */
    int pivot1 = a[e2];
    int pivot2 = a[e4];
    
    /*
    * The first and the last elements to be sorted are moved to the
    * locations formerly occupied by the pivots. When partitioning
    * is complete, the pivots are swapped back into their final
    * positions, and excluded from subsequent sorting.
    */
    a[e2] = a[left];
    a[e4] = a[right];
    
    while (a[++less] < pivot1);
    while (a[--great] > pivot2);
    
    /*
    * Partitioning:
    *
    *   left part           center part                   right part
    * +--------------------------------------------------------------+
    * |  < pivot1  |  pivot1 <= && <= pivot2  |    ?    |  > pivot2  |
    * +--------------------------------------------------------------+
    *               ^                          ^       ^
    *               |                          |       |
    *              less                        k     great
    */
    outer:
    for (int k = less - 1; ++k <= great; ) {
    int ak = a[k];
    if (ak < pivot1) { // Move a[k] to left part
    a[k] = a[less];
    /*
    * Here and below we use "a[i] = b; i++;" instead
    * of "a[i++] = b;" due to performance issue.
    */
    a[less] = ak;
    ++less;
    } else if (ak > pivot2) { // Move a[k] to right part
    while (a[great] > pivot2) {
    if (great-- == k) {
    break outer;
    }
    }
    if (a[great] < pivot1) { // a[great] <= pivot2
    a[k] = a[less];
    a[less] = a[great];
    ++less;
    } else { // pivot1 <= a[great] <= pivot2
    a[k] = a[great];
    }
    /*
    * Here and below we use "a[i] = b; i--;" instead
    * of "a[i--] = b;" due to performance issue.
    */
    a[great] = ak;
    --great;
    }
    }
    
    // Swap pivots into their final positions
    a[left]  = a[less  - 1]; a[less  - 1] = pivot1;
    a[right] = a[great + 1]; a[great + 1] = pivot2;
    
    // Sort left and right parts recursively, excluding known pivots
    sort(a, left, less - 2, leftmost);
    sort(a, great + 2, right, false);
    
    /*
    * If center part is too large (comprises > 4/7 of the array),
    * swap internal pivot values to ends.
    */
    if (less < e1 && e5 < great) {
    /*
    * Skip elements, which are equal to pivot values.
    */
    while (a[less] == pivot1) {
    ++less;
    }
    
    while (a[great] == pivot2) {
    --great;
    }
    
    /*
    * Partitioning:
    *
    *   left part         center part                  right part
    * +----------------------------------------------------------+
    * | == pivot1 |  pivot1 < && < pivot2  |    ?    | == pivot2 |
    * +----------------------------------------------------------+
    *              ^                        ^       ^
    *              |                        |       |
    *             less                      k     great
    *
    * Invariants:
    *
    *              all in (*,  less) == pivot1
    *     pivot1 < all in [less,  k)  < pivot2
    *              all in (great, *) == pivot2
    *
    * Pointer k is the first index of ?-part.
    */
    outer:
    for (int k = less - 1; ++k <= great; ) {
    int ak = a[k];
    if (ak == pivot1) { // Move a[k] to left part
    a[k] = a[less];
    a[less] = ak;
    ++less;
    } else if (ak == pivot2) { // Move a[k] to right part
    while (a[great] == pivot2) {
    if (great-- == k) {
    break outer;
    }
    }
    if (a[great] == pivot1) { // a[great] < pivot2
    a[k] = a[less];
    /*
    * Even though a[great] equals to pivot1, the
    * assignment a[less] = pivot1 may be incorrect,
    * if a[great] and pivot1 are floating-point zeros
    * of different signs. Therefore in float and
    * double sorting methods we have to use more
    * accurate assignment a[less] = a[great].
    */
    a[less] = pivot1;
    ++less;
    } else { // pivot1 < a[great] < pivot2
    a[k] = a[great];
    }
    a[great] = ak;
    --great;
    }
    }
    }
    
    // Sort center part recursively
    sort(a, less, great, false);
    
    } else { // Partitioning with one pivot
    /*
    * Use the third of the five sorted elements as pivot.
    * This value is inexpensive approximation of the median.
    */
    int pivot = a[e3];
    
    /*
    * Partitioning degenerates to the traditional 3-way
    * (or "Dutch National Flag") schema:
    *
    *   left part    center part              right part
    * +-------------------------------------------------+
    * |  < pivot  |   == pivot   |     ?    |  > pivot  |
    * +-------------------------------------------------+
    *              ^              ^        ^
    *              |              |        |
    *             less            k      great
    *
    * Invariants:
    *
    *   all in (left, less)   < pivot
    *   all in [less, k)     == pivot
    *   all in (great, right) > pivot
    *
    * Pointer k is the first index of ?-part.
    */
    for (int k = less; k <= great; ++k) {
    if (a[k] == pivot) {
    continue;
    }
    int ak = a[k];
    if (ak < pivot) { // Move a[k] to left part
    a[k] = a[less];
    a[less] = ak;
    ++less;
    } else { // a[k] > pivot - Move a[k] to right part
    while (a[great] > pivot) {
    --great;
    }
    if (a[great] < pivot) { // a[great] <= pivot
    a[k] = a[less];
    a[less] = a[great];
    ++less;
    } else { // a[great] == pivot
    /*
    * Even though a[great] equals to pivot, the
    * assignment a[k] = pivot may be incorrect,
    * if a[great] and pivot are floating-point
    * zeros of different signs. Therefore in float
    * and double sorting methods we have to use
    * more accurate assignment a[k] = a[great].
    */
    a[k] = pivot;
    }
    a[great] = ak;
    --great;
    }
    }
    
    /*
    * Sort left and right parts recursively.
    * All elements from center part are equal
    * and, therefore, already sorted.
    */
    sort(a, left, less - 1, leftmost);
    sort(a, great + 1, right, false);
    }

    归并排序

    你不会以为元素多(>快排阈值)就一定要用归并了吧?

    错!元素多时确实对算法的稳定性有要求,可是如果这些元素能够稳定快排呢?

    开发JDK的大牛显然考虑了这一点:他们在归并排序之前对元素进行了是否能稳定快排的判断:

    • 如果数组本身几乎已经排好了(可以看出几段有序数组的拼接),那还排什么,理一理返回就行了
    • 如果出现连续33个相等元素——使用快排(实话说,我没弄明白为什么,有无大牛给我指点迷津?)
    //判断结构是否适合归并排序
    int[] run = new int[MAX_RUN_COUNT + 1];
    int count = 0; run[0] = left;
    
    // Check if the array is nearly sorted
    for (int k = left; k < right; run[count] = k) {
    if (a[k] < a[k + 1]) { // ascending
    while (++k <= right && a[k - 1] <= a[k]);
    } else if (a[k] > a[k + 1]) { // descending
    while (++k <= right && a[k - 1] >= a[k]);
    for (int lo = run[count] - 1, hi = k; ++lo < --hi; ) {
    int t = a[lo]; a[lo] = a[hi]; a[hi] = t;
    }
    } else {
    //连续MAX_RUN_LENGTH(33)个相等元素,使用快排
    for (int m = MAX_RUN_LENGTH; ++k <= right && a[k - 1] == a[k]; ) {
    if (--m == 0) {
    sort(a, left, right, true);
    return;
    }
    }
    }
    
    //count达到MAX_RUN_LENGTH,使用快排
    if (++count == MAX_RUN_COUNT) {
    sort(a, left, right, true);
    return;
    }
    }
    
    // Check special cases
    // Implementation note: variable "right" is increased by 1.
    if (run[count] == right++) { // The last run contains one element
    run[++count] = right;
    } else if (count == 1) { // The array is already sorted
    return;
    }

    归并排序源码

    byte odd = 0;
    for (int n = 1; (n <<= 1) < count; odd ^= 1);
    
    // Use or create temporary array b for merging
    int[] b;                 // temp array; alternates with a
    int ao, bo;              // array offsets from 'left'
    int blen = right - left; // space needed for b
    if (work == null || workLen < blen || workBase + blen > work.length) {
    work = new int[blen];
    workBase = 0;
    }
    if (odd == 0) {
    System.arraycopy(a, left, work, workBase, blen);
    b = a;
    bo = 0;
    a = work;
    ao = workBase - left;
    } else {
    b = work;
    ao = 0;
    bo = workBase - left;
    }
    
    // Merging
    for (int last; count > 1; count = last) {
    for (int k = (last = 0) + 2; k <= count; k += 2) {
    int hi = run[k], mi = run[k - 1];
    for (int i = run[k - 2], p = i, q = mi; i < hi; ++i) {
    if (q >= hi || p < mi && a[p + ao] <= a[q + ao]) {
    b[i + bo] = a[p++ + ao];
    } else {
    b[i + bo] = a[q++ + ao];
    }
    }
    run[++last] = hi;
    }
    if ((count & 1) != 0) {
    for (int i = right, lo = run[count - 1]; --i >= lo;
    b[i + bo] = a[i + ao]
    );
    run[++last] = right;
    }
    int[] t = a; a = b; b = t;
    int o = ao; ao = bo; bo = o;
    }

    最后

    第一次看文章的朋友可以关注我

    不定期发布大厂面试题、Android架构技术知识点及解析等内容,还有学习PDF+源码笔记+面试文档+进阶视频分享

    点击就看 学习小彩蛋
    点个赞,收藏起来认真学习哦

    内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
    标签: