您的位置:首页 > 产品设计 > UI/UE

并发-ConcurrentLinkedQueue-源码解读

2019-05-13 15:18 183 查看
版权声明:本文为博主原创文章,遵循 CC 4.0 by-sa 版权协议,转载请附上原文出处链接和本声明。 本文链接:https://blog.csdn.net/qq_20667511/article/details/90174006

介绍

在并发编程中,我们可能经常需要用到线程安全的队列,java为此提供了两种模式的队列:阻塞队列和非阻塞队列。

阻塞队列和非阻塞队列如何实现线程安全?
1. 阻塞队列可以用一个锁(入队和出队共享一把锁)或者两个锁(入队使用一把锁,出队使用一把锁)来实现线程安全,JDK中典型的实现是BlockingQueue;
2.非阻塞队列可以用循环CAS的方式来保证数据的一致性,来达到线程安全的目的。

接下来我们就来看看JDK是如何使用非阻塞的方式来实现线程安全队列ConcurrentLinkedQueue的

测试案例

线上测试案例,从直观的角度来说,看看效果

package cn.zwc.demo;

import java.util.concurrent.ConcurrentLinkedQueue;

/**
*
offer(E e)
将指定元素插入此队列的尾部。

poll()
获取并移除此队列的头,如果此队列为空,则返回 null。

peek()
获取但不移除此队列的头;如果此队列为空,则返回 null

remove(Object o)
从队列中移除指定元素的单个实例(如果存在),只移除第一个出现的

size()
队列的大小

isEmpty
判断当前队列是否为空

* @author zwc
* @date 2019年5月13日 下午1:49:15
*/
public class ConcurrentLinkedDequeTest {
public static void main(String[] args) {
ConcurrentLinkedQueue<Integer> queue = new ConcurrentLinkedQueue<Integer>();

boolean offer = queue.offer(2);
queue.offer(3);
queue.offer(4);
queue.offer(3);

System.out.println(queue.remove(3));
System.out.println("队列中 的大小是:"+ queue.size());
System.out.println("插入成功值" + offer +"\t" + queue.peek());
System.out.println("队列是否为空" + queue.isEmpty());
System.out.println("取出队首的值"+queue.poll());
System.out.println("队列是否为空" + queue.isEmpty());

//		System.out.println(queue.poll());

//		queue.add(1);
//		queue.add(2);
//		queue.add(3);
//		System.out.println(queue.peek());
//		System.out.println(queue.size());
//		System.out.println(queue.size());
}
}

源码分析

1继承关系

public class ConcurrentLinkedQueue<E> extends AbstractQueue<E>  implements Queue<E>, java.io.Serializable

2 局部变量定义

//  A node from which the first live (non-deleted) node (if any)  can be reached in O(1) time.
private transient volatile Node<E> head;
// A node from which the last node on list (that is, the unique node with node.next == null) can be reached in O(1) time.
private transient volatile Node<E> tail;

3.构造函数

/**
* Creates a {@code ConcurrentLinkedQueue} that is initially empty.
*/
public ConcurrentLinkedQueue() {
head = tail = new Node<E>(null);
}

直接将集合转换成队列,通过

ConcurrentLinkedQueue
的构造函数

public ConcurrentLinkedQueue(Collection<? extends E> c) {
Node<E> h = null, t = null;
for (E e : c) {
checkNotNull(e);
Node<E> newNode = new Node<E>(e);
if (h == null)
h = t = newNode;
else {
t.lazySetNext(newNode);
t = newNode;
}
}
if (h == null)
h = t = new Node<E>(null);
head = h;
tail = t;
}

4.方法

add()
该方法,底层实现是
offer()

public boolean add(E e) {
return offer(e);
}

offer()
这个方法很有意思,添加指定元素到队列的队尾,因为这个队列是的大小是无限制的,所以只会返回true,不会返回false。

// Inserts the specified element at the tail of this queue.  As the queue is unbounded, this method will never return {@code false}.
public boolean offer(E e) {
// 如果该元素为空的,会抛出异常的
checkNotNull(e);
final Node<E> newNode = new Node<E>(e);

for (Node<E> t = tail, p = t;;) {
Node<E> q = p.next;
if (q == null) {
// p is last node
if (p.casNext(null, newNode)) {
// Successful CAS is the linearization point
// for e to become an element of this queue,
// and for newNode to become "live".
if (p != t) // hop two nodes at a time
casTail(t, newNode);  // Failure is OK.
return true;
}
// Lost CAS race to another thread; re-read next
}
else if (p == q)
// We have fallen off list.  If tail is unchanged, it
// will also be off-list, in which case we need to
// jump to head, from which all live nodes are always
// reachable.  Else the new tail is a better bet.
p = (t != (t = tail)) ? t : head;
else
// Check for tail updates after two hops.
p = (p != t && t != (t = tail)) ? t : q;
}
}

poll()
方法,取出队列的头节点(删除该节点)

public E poll() {
// goto的标记
restartFromHead:
// 死循环
for (;;) {
for (Node<E> h = head, p = h, q;;) {
// 保存队头节点
E item = p.item;

if (item != null && p.casItem(item, null)) {
// Successful CAS is the linearization point
// for item to be removed from this queue.
if (p != h) // hop two nodes at a time
updateHead(h, ((q = p.next) != null) ? q : p);
// 返回该队列的头结点
return item;
}
else if ((q = p.next) == null) {
updateHead(h, p);
return null;
}
else if (p == q)
continue restartFromHead;
else
p = q;
}
}
}

peek()
查看队头节点(不删除该节点)

public E peek() {
restartFromHead:
for (;;) {
for (Node<E> h = head, p = h, q;;) {
E item = p.item;
if (item != null || (q = p.next) == null) {
updateHead(h, p);
return item;
}
else if (p == q)
continue restartFromHead;

3ff7
else
p = q;
}
}
}

first()
,获取到第一个节点,而非元素,这个有别于
poll/peek
(这两个方法获取到的是元素)
/**
* Returns the first live (non-deleted) node on list, or null if none.
* This is yet another variant of poll/peek; here returning the
* first node, not element. We could make peek() a wrapper around
* first(), but that would cost an extra volatile read of item,
* and the need to add a retry loop to deal with the possibility
* of losing a race to a concurrent poll().

*/
其中这段话中,提到了 peek() 和 poll(). 这两个方法,执行的效率没有
first()

Node<E> first() {
restartFromHead:
for (;;) {
for (Node<E> h = head, p = h, q;;) {
boolean hasItem = (p.item != null);
if (hasItem || (q = p.next) == null) {
updateHead(h, p);
return hasItem ? p : null;
}
else if (p == q)
continue restartFromHead;
else
p = q;
}
}
}

isEmpty()
,队列为空的判断,在判断队列是否为空的情况下,isEmpty()的执行效率高于size()> 0 的判断

public boolean isEmpty() {
return first() == null;
}

size()
,获取到队列的长度,该方法不能用于在高并发的情况下。该方法很消耗性能,获取到队列的长度,是通过遍历整个队列。
/

* Returns the number of elements in this queue. If this queue
* contains more than {@code Integer.MAX_VALUE} elements, returns
* {@code Integer.MAX_VALUE}.
*
*

Beware that, unlike in most collections, this method is
* NOT a constant-time operation. Because of the
* asynchronous nature of these queues, determining the current
* number of elements requires an O(n) traversal.

* Additionally, if elements are added or removed during execution
* of this method, the returned result may be inaccurate. Thus,
* this method is typically not very useful in concurrent
* applications.

*
* @return the number of elements in this queue
*/

public int size() {
int count = 0;
for (Node<E> p = first(); p != null; p = succ(p))
if (p.item != null)
// Collection.size() spec says to max out
if (++count == Integer.MAX_VALUE)
break;
return count;
}

contains
判断某一个元素是否包含在队列中

public boolean contains(Object o) {
if (o == null) return false;
for (Node<E> p = first(); p != null; p = succ(p)) {
E item = p.item;
if (item != null && o.equals(item))
return true;
}
return false;
}

remove()
删除队列中第一次出现的元素,删除成功,返回true

public boolean remove(Object o) {
if (o == null) return false;
Node<E> pred = null;
for (Node<E> p = first(); p != null; p = succ(p)) {
E item = p.item;
if (item != null &&
o.equals(item) &&
p.casItem(item, null)) {
Node<E> next = succ(p);
if (pred != null && next != null)
pred.casNext(p, next);
return true;
}
pred = p;
}
return false;
}
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: