您的位置:首页 > 编程语言 > C语言/C++

C++之虚继承和虚函数对C++对象内存模型造成的影响(类/对象的大小)

2018-03-26 15:49 483 查看
回顾一下关于类/对象大小的计算原则:
[align=left]类大小计算遵循结构体对齐原则[/align][align=left]第一个数据成员放在offset为0的位置其它成员对齐至min(sizeof(member),#pragma pack(n)所指定的值)的整数倍。整个结构体也要对齐,结构体总大小对齐至各个min中最大值的整数倍。[/align][align=left]win32 可选的有1, 2, 4, 8, 16[/align]linux 32 可选的有1, 2, 4类的大小与数据成员有关与成员函数无关
类的大小与静态数据成员无关
虚继承对类的大小的影响
虚函数对类的大小的影响

下面通过实例来展示虚继承和虚函数对类大小造成的影响。
一、只出现虚继承的情况
 C++ Code 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
 #include <iostream>
using namespace std;

class BB
{
public :
      int bb_ ;
};

class B1 : virtual public BB
{
public :
      int b1_ ;
};

class B2 : virtual public BB
{
public :
      int b2_ ;
};

class DD : public B1, public B2
{
public :
      int dd_ ;
};

int main (void)
{
      cout<<sizeof (BB)<< endl;
      cout<<sizeof (B1)<< endl;
      cout<<sizeof (DD)<< endl;

      B1 b1 ;
      int** p ;

      cout<<&b1 <<endl;
      cout<<&b1 .bb_<< endl;
      cout<<&b1 .b1_<< endl;

      p = (int **)&b1;
      cout<<p [0][0]<<endl;
      cout<<p [0][1]<<endl;

      DD dd ;
      cout<<&dd <<endl;
      cout<<&dd .bb_<< endl;
      cout<<&dd .b1_<< endl;
      cout<<&dd .b2_<< endl;
      cout<<&dd .dd_<< endl;
      p = (int **)ⅆ
      cout<<p [0][0]<<endl;
      cout<<p [0][1]<<endl;
      cout<<endl ;
      cout<<p [2][0]<<endl;
      cout<<p [2][1]<<endl;

      BB* pp ;

      pp = &dd ;
      dd.bb_ = 10; //对象的内存模型在编译时就已经确定了,否则无法定义类的对象,因为要开辟内存
      int base = pp-> bb_;     // 通过间接访问 (其实pp 已经偏移了20 ),这需要运行时的支持
      cout<<"dd.bb_=" <<base<< endl;

      return 0;
}


从输出的地址和虚基类表成员数据可以画出对象内存模型图:

virtual base table 

本类地址与虚基类表指针地址的差
虚基类地址与虚基类表指针地址的差
virtual base table pointer(vbptr)



从程序可以看出pp是BB* 指针,通过打印pp 的值与&dd 比较可知,
cout<<(void*)&dd<<endl;
cout<<(void*)pp<<endl;

pp实际上已经偏移了20个字节,如何实现的呢?先找到首个vbptr,找到虚基类BB地址与虚基类表指针地址的差,也即是20,接着pp偏移20个字节指向了dd对象中的BB部分,然后就访问到了bb_,这是在运行时才做的转换。记住:C++标准规定对对象取地址将始终为对应类型的首地址。

二、只出现虚函数的情况
(一):一般继承
 C++ Code 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
 #include <iostream>
using namespace std;

class Base
{
public :
    virtual void Fun1()
    {
        cout << "Base::Fun1 ..." << endl;
    }

    virtual void Fun2()
    {
        cout << "Base::Fun2 ..." << endl;
    }
    int data1_ ;
};

class Derived : public Base
{
public :
    void Fun2 ()
    {
        cout << "Derived::Fun2 ..." << endl;
    }
    virtual void Fun3()
    {
        cout << "Derived::Fun3 ..." << endl;
    }
    int data2_ ;
};

typedef void (* FUNC)(void );

int main (void)
{
    cout << sizeof (Base) << endl;
    cout << sizeof (Derived) << endl;
    Base b ;
    int **p = (int **)& b;
    FUNC fun = (FUNC) p[0][0];
    fun();
    fun = (FUNC )p[0][1];
    fun();
    cout << endl ;

    Derived d ;
    p = (int **)&d;
    fun = (FUNC )p[0][0];
    fun();
    fun = (FUNC )p[0][1];
    fun();
    fun = (FUNC )p[0][2];
    fun();

    return 0;
}
从输出的函数体可以画出对象内存模型图:
vtbl:虚函数表(存放虚函数的函数指针)
vptr:虚函数表指针



从输出可以看出,Derived类继承了Base::Fun1,而覆盖了Fun2,此外还有自己的Fun3。注意,因为Fun3是虚函数,才会出现在虚函数表,如果是一般函数是不会的,因为不用通过vptr间接访问。

(二)、钻石继承
 C++ Code 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
#include <iostream>
using namespace std;

class BB
{
public:
    virtual void vpbb()
    {
        cout << "BB:vpbb().." << endl;
    }
    int bb_;
};
class B1 : public BB
{
public:
    virtual void vpb1()
    {
        cout << "B1:vpb1().." << endl;
    }
    int b1_;
};
class B2 : public BB
{
public:
    virtual void vpb2()
    {
        cout << "B2:vpb2().." << endl;
    }
    int b2_;
};
class DD : public B1, public B2
{
public:
    virtual void vpdd()
    {
        cout << "DD:vpdd().." << endl;
    }
    int dd_;
};

typedef void (* FUNC)(void );

int main()
{
    cout << sizeof(BB) << endl;
    cout << sizeof(B1) << endl;
    cout << sizeof(DD) << endl;
    cout << endl;

    DD dd ;
    cout << &dd << endl;
    cout << &dd.B1::bb_ << endl;
    cout << &dd.B2::bb_ << endl;
    cout << &dd .b1_ << endl;
    cout << &dd .b2_ << endl;
    cout << &dd .dd_ << endl;
    cout << endl;

    B1 b ;
    int **p = (int **)& b;
    FUNC fun = (FUNC) p[0][0];
    fun();
    fun = (FUNC )p[0][1];
    fun();
    cout << endl ;

    p = (int **)&dd
    fun = (FUNC)p[0][0];
    fun();
    fun = (FUNC)p[0][1];
    fun();
    fun = (FUNC)p[0][2];
    fun();

    fun = (FUNC)p[3][0];
    fun();
    fun = (FUNC)p[3][1];
    fun();

    cout << endl;

    return 0;
}
https://img-blog.csdn.net/20130730154238062?watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvam51X3NpbWJh/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" border="0" >

从成员输出的地址和通过虚函数表指针访问到的函数可以画出模型:



DD::vfdd 的位置跟继承的顺序有关,如果DD先继承的是B2, 那么它将跟在B2::vfb2 的下面。
如果派生类是从多个基类继承或者有多个继承分支(从所有根类开始算起),而其中若干个继承分支上出现了多态类,则派生类将从这些分支中的每个分支上继承一个vptr,编译器也将为它生成多个vtable,有几个vptr就生成几个vtable(每个vptr分别指向其中一个),分别与它的多态基类对应。

三、虚继承与虚函数同时出现的情况:
 C++ Code 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
 #include <iostream>
using namespace std;

class BB
{
public :
      virtual void vfbb()
     {
           cout<<"BB::vfbb" <<endl;
     }
      virtual void vfbb2()
     {
           cout<<"BB::vfbb2" <<endl;
     }
      int bb_ ;
};

class B1 : virtual public BB
{
public :
      virtual void vfb1()
     {
           cout<<"B1::vfb1" <<endl;
     }
      int b1_ ;
};

class B2 : virtual public BB
{
public :
      virtual void vfb2()
     {
           cout<<"B2::vfb2" <<endl;
     }
      int b2_ ;
};

class DD : public B1, public B2
{
public :
      virtual void vfdd()
     {
           cout<<"DD::vfdd" <<endl;
     }
      int dd_ ;
};

typedef void (* FUNC)(void);

int main (void)
{
      cout<<sizeof (BB)<< endl;
      cout<<sizeof (B1)<< endl;
      cout<<sizeof (DD)<< endl;

      BB bb ;
      int** p ;
      p = (int **)&bb;
      FUNC fun ;
      fun = (FUNC )p[0][0];
      fun();
      fun = (FUNC )p[0][1];
      fun();
      cout<<endl ;

      B1 b1 ;
     
      p = (int **)&b1;
      fun = (FUNC )p[0][0];
      fun();
      fun = (FUNC )p[3][0];
      fun();
      fun = (FUNC )p[3][1];
      fun();

      cout<<p [1][0]<<endl;
      cout<<p [1][1]<<endl;
      cout<<endl ;

      DD dd ;
      p = (int **)ⅆ
      fun = (FUNC )p[0][0];
      fun();
      fun = (FUNC )p[0][1]; // DD::vfdd 挂在 B1::vfb1的下面
      fun();
      fun = (FUNC )p[3][0];
      fun();
      fun = (FUNC )p[7][0];
      fun();
      fun = (FUNC )p[7][1];
      fun();
     
      cout<<p [1][0]<<endl;
      cout<<p [1][1]<<endl;
      cout<<p [4][0]<<endl;
      cout<<p [4][1]<<endl;

      return 0;
}


从输出的虚基类表成员数据和虚函数体可以画出对象内存模型图:



上图中vfdd 出现的位置跟继承的顺序有关,如果DD先继承的是B2,那么它将跟在vfb2 的下面。
注意:如果没有虚继承,则虚函数表会合并,一个类只会存在一个虚函数表和一个虚函数表指针(同个类的对象共享),当然也不会有虚基类表和虚基类表指针的存在。但如果是钻石继承,那么是会存在两份虚函数表和两份虚函数表指针的。
转载自:https://blog.csdn.net/jnu_simba/article/details/9323739
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: