您的位置:首页 > 编程语言

mser 最大稳定极值区域(文字区域定位)算法 附完整C代码

2018-02-03 23:12 726 查看
mser 的全称:Maximally Stable Extremal Regions

第一次听说这个算法时,是来自当时部门的一个同事,

提及到他的项目用它来做文字区域的定位,对这个算法做了一些优化。

也就是中文车牌识别开源项目EasyPR的作者liuruoze,刘兄。

自那时起就有一块石头没放下,想要找个时间好好理理这个算法。

学习一些它的一些思路。

因为一般我学习算法的思路:3个做法,

第一步,编写demo示例。

第二步,进行算法移植或效果改进。

第三步,进行算法性能优化。

然后在这三个过程中,不断来回地验证,实测。

任何事情,一下子囫囵吞枣,容易呛到。

找了不少资料,mser这方面的资料还挺少。

比较不错的资料自然就是开源项目opencv以及VLFeat。

opencv用了太多依赖和封装,阅读代码非常费事。

VLFeat则友好得多。

嗯,花了点时间把mser从VLFeat抽离出来,并编写相应的测试用例。

代码注释比较详尽,写这个示例 demo 的时候,

来回翻阅官方文档无头绪,阅读代码以及注释才大致理清楚逻辑。

项目地址:https://github.com/cpuimage/mser

附完整代码:

/*
* Copyright (C) 2007-12 Andrea Vedaldi and Brian Fulkerson.
* All rights reserved.
* This file is part of the VLFeat library and is made available under
* the terms of the BSD license (see the COPYING file).
*/
#define MSER_DRIVER_VERSION 0.2

#define STB_IMAGE_STATIC
#define STB_IMAGE_IMPLEMENTATION
#include "stb_image.h"
/* ref:https://github.com/nothings/stb/blob/master/stb_image.h */
#define TJE_IMPLEMENTATION
#include "tiny_jpeg.h"
/* ref:https://github.com/serge-rgb/TinyJPEG/blob/master/tiny_jpeg.h */

#include <stdlib.h>
#include <stdio.h>
/* 计时 */
#include <stdint.h>
#if   defined(__APPLE__)
#include <mach/mach_time.h>
#elif defined(_WIN32)
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
#else /* __linux */
#include <time.h>
#ifndef  CLOCK_MONOTONIC  /* _RAW */
#define CLOCK_MONOTONIC CLOCK_REALTIME
#endif
#endif
static
uint64_t nanotimer()
{
static int ever = 0;
#if defined(__APPLE__)
static mach_timebase_info_data_t frequency;
if (!ever)
{
if (mach_timebase_info(&frequency) != KERN_SUCCESS)
{
return(0);
}
ever = 1;
}
return;
#elif defined(_WIN32)
static LARGE_INTEGER frequency;
if (!ever)
{
QueryPerformanceFrequency(&frequency);
ever = 1;
}
LARGE_INTEGER t;
QueryPerformanceCounter(&t);
return((t.QuadPart * (uint64_t) 1e9) / frequency.QuadPart);
#else   /* __linux */
struct timespec t;
if (!ever)
{
if (clock_gettime(CLOCK_MONOTONIC, &spec) != 0)
{
return(0);
}
ever = 1;
}
clock_gettime(CLOCK_MONOTONIC, &spec);
return((t.tv_sec * (uint64_t) 1e9) + t.tv_nsec);
#endif
}

static double now()
{
static uint64_t epoch = 0;
if (!epoch)
{
epoch = nanotimer();
}
return((nanotimer() - epoch) / 1e9);
};

double  calcElapsed(double start, double end)
{
double took = -start;
return(took + end);
}

unsigned char* loadImage(const char * filename, int * width, int * height, int * depth)
{
unsigned char *output = stbi_load(filename, width, height, depth, 1);
*depth = 1;
return(output);
}

bool saveJpeg(const char * filename, int width, int height, int depth, unsigned char* bits)
{
if (!tje_encode_to_file(filename, width, height, depth, true, bits))
{
fprintf(stderr, "save JPEG fail.\n");
return(false);
}

return(true);
}

/** @brief Maximum value
**
** Maximum value of the integer type ::unsigned char.
**/
#define MSER_PIX_MAXVAL 256

/** @brief MSER Filter
**
** The MSER filter computes the Maximally Stable Extremal Regions of
** an image.
**
** @sa @ref mser
**/
typedef struct _MserFilt MserFilt;

/** @brief MSER filter statistics */
typedef struct _MserStats MserStats;

/** @brief MSER filter statistics definition */
struct _MserStats
{
int    num_extremal;           /**< number of extremal regions                                */
int    num_unstable;           /**< number of unstable extremal regions                       */
int    num_abs_unstable;       /**< number of regions that failed the absolute stability test */
int    num_too_big;            /**< number of regions that failed the maximum size test       */
int    num_too_small;          /**< number of regions that failed the minimum size test       */
int    num_duplicates;         /**< number of regions that failed the duplicate test          */
};

/** @name Construction and Destruction
** @{
**/
MserFilt* mser_new(int ndims, int const* dims);

void mser_delete(MserFilt *f);

/** @} */

/** @name Processing
** @{
**/
void mser_process(MserFilt *f,
unsigned char const *im);

void mser_ell_fit(MserFilt *f);

/** @} */

/** @name Retrieving data
** @{
**/
unsigned int mser_get_regions_num(MserFilt const *f);

unsigned int const* mser_get_regions(MserFilt const *f);

float const* mser_get_ell(MserFilt const *f);

unsigned int mser_get_ell_num(MserFilt const *f);

unsigned int mser_get_ell_dof(MserFilt const *f);

MserStats const* mser_get_stats(MserFilt const *f);

/** @} */

/** @name Retrieving parameters
** @{
**/
unsigned char mser_get_delta(MserFilt const *f);

float mser_get_min_area(MserFilt const *f);

float mser_get_max_area(MserFilt const *f);

float mser_get_max_variation(MserFilt const *f);

float mser_get_min_diversity(MserFilt const *f);

/** @} */

/** @name Setting parameters
** @{
**/
void mser_set_delta(MserFilt *f, unsigned char x);

void mser_set_min_area(MserFilt *f, float x);

void mser_set_max_area(MserFilt *f, float x);

void mser_set_max_variation(MserFilt *f, float x);

void mser_set_min_diversity(MserFilt *f, float x);

/** @} */

/* ====================================================================
*                                                   INLINE DEFINITIONS
* ================================================================== */

/** @internal
** @brief MSER accumulator data type
**
** This is a large integer type. It should be large enough to contain
** a number equal to the area (volume) of the image by the image
** width by the image height (for instance, if the image is a square
** of side 256, the maximum value is 256 x 256 x 256).
**/
typedef float mser_acc;

/** @internal @brief Basic region flag: null region */
#ifdef COMPILER_MSC
#define MSER_VOID_NODE ( (1ui64 << 32) - 1)
#else
#define MSER_VOID_NODE ( (1ULL << 32) - 1)
#endif

/* ----------------------------------------------------------------- */

/** @internal
** @brief MSER: basic region (declaration)
**
** Extremal regions and maximally stable extremal regions are
** instances of image regions.
**
** There is an image region for each pixel of the image. Each region
** is represented by an instance of this structure.  Regions are
** stored into an array in pixel order.
**
** Regions are arranged into a forest. MserReg::parent points to
** the parent node, or to the node itself if the node is a root.
** MserReg::parent is the index of the node in the node array
** (which therefore is also the index of the corresponding
** pixel). MserReg::height is the distance of the fartest leaf. If
** the node itself is a leaf, then MserReg::height is zero.
**
** MserReg::area is the area of the image region corresponding to
** this node.
**
** MserReg::region is the extremal region identifier. Not all
** regions are extremal regions however; if the region is NOT
** extremal, this field is set to ....
**/
struct _MserReg
{
unsigned int    parent;         /**< points to the parent region.            */
unsigned int    shortcut;       /**< points to a region closer to a root.    */
unsigned int    height;         /**< region height in the forest.            */
unsigned int    area;           /**< area of the region.                     */
};

/** @internal @brief MSER: basic region */
typedef struct _MserReg MserReg;

/* ----------------------------------------------------------------- */

/** @internal
** @brief MSER: extremal region (declaration)
**
** Extremal regions (ER) are extracted from the region forest. Each
** region is represented by an instance of this structure. The
** structures are stored into an array, in arbitrary order.
**
** ER are arranged into a tree. @a parent points to the parent ER, or
** to itself if the ER is the root.
**
** An instance of the structure represents the extremal region of the
** level set of intensity MserExtrReg::value and containing the
** pixel MserExtReg::index.
**
** MserExtrReg::area is the area of the extremal region and
** MserExtrReg::area_top is the area of the extremal region
** containing this region in the level set of intensity
** MserExtrReg::area + @c delta.
**
** MserExtrReg::variation is the relative area variation @c
** (area_top-area)/area.
**
** MserExtrReg::max_stable is a flag signaling whether this extremal
** region is also maximally stable.
**/
struct _MserExtrReg
{
int        parent;         /**< index of the parent region                   */
int        index;          /**< index of pivot pixel                         */
unsigned char    value;          /**< value of pivot pixel                         */
unsigned int    shortcut;       /**< shortcut used when building a tree           */
unsigned int    area;           /**< area of the region                           */
float        variation;      /**< rel. area variation                          */
unsigned int    max_stable;     /**< max stable number (=0 if not maxstable)      */
};

/** @internal
** @brief MSER: extremal region */
typedef struct _MserExtrReg MserExtrReg;

/* ----------------------------------------------------------------- */

/** @internal
** @brief MSER filter
** @see @ref mser
**/
struct _MserFilt
{
/** @name Image data and meta data @internal */
/*@{*/
int    ndims;          /**< number of dimensions                    */
int    *dims;          /**< dimensions                              */
int    nel;            /**< number of image elements (pixels)       */
int    *subs;          /**< N-dimensional subscript                 */
int    *dsubs;         /**< another subscript                       */
int    *strides;       /**< strides to move in image data           */
/*@}*/

unsigned int    *perm;  /**< pixel ordering                          */
unsigned int    *joins; /**< sequence of join ops                    */
int        njoins; /**< number of join ops                      */

/** @name Regions */
/*@{*/
MserReg        *r;     /**< basic regions                           */
MserExtrReg    *er;    /**< extremal tree                           */
unsigned int    *mer;   /**< maximally stable extremal regions       */
int        ner;    /**< number of extremal regions              */
int        nmer;   /**< number of maximally stable extr. reg.   */
int        rer;    /**< size of er buffer                       */
int        rmer;   /**< size of mer buffer                      */
/*@}*/

/** @name Ellipsoids fitting */
/*@{*/
float    *acc;           /**< moment accumulator.                    */
float    *ell;           /**< ellipsoids list.                       */
int    rell;           /**< size of ell buffer                     */
int    nell;           /**< number of ellipsoids extracted         */
int    dof;            /**< number of dof of ellipsoids.           */

/*@}*/

/** @name Configuration */
/*@{*/
int    verbose;        /**< be verbose                             */
int    delta;          /**< delta filter parameter                 */
float    max_area;       /**< badness test parameter                 */
float    min_area;       /**< badness test parameter                 */
float    max_variation;  /**< badness test parameter                 */
float    min_diversity;  /**< minimum diversity                      */
/*@}*/

MserStats stats;        /** run statistic                           */
};

/* ----------------------------------------------------------------- */

/** @brief Get delta
** @param f MSER filter.
** @return value of @c delta.
**/
unsigned char
mser_get_delta(MserFilt const *f)
{
return(f->delta);
}

/** @brief Set delta
** @param f MSER filter.
** @param x value of @c delta.
**/
void
mser_set_delta(MserFilt *f, unsigned char x)
{
f->delta = x;
}

/* ----------------------------------------------------------------- */

/** @brief Get minimum diversity
** @param  f MSER filter.
** @return value of @c minimum diversity.
**/
float
mser_get_min_diversity(MserFilt const *f)
{
return(f->min_diversity);
}

/** @brief Set minimum diversity
** @param f MSER filter.
** @param x value of @c minimum diversity.
**/
void
mser_set_min_diversity(MserFilt *f, float x)
{
f->min_diversity = x;
}

/* ----------------------------------------------------------------- */

/** @brief Get statistics
** @param f MSER filter.
** @return statistics.
**/
MserStats const*
mser_get_stats(MserFilt const *f)
{
return(&f->stats);
}

/* ----------------------------------------------------------------- */

/** @brief Get maximum region area
** @param f MSER filter.
** @return maximum region area.
**/
float
mser_get_max_area(MserFilt const *f)
{
return(f->max_area);
}

/** @brief Set maximum region area
** @param f MSER filter.
** @param x maximum region area.
**/
void
mser_set_max_area(MserFilt *f, float x)
{
f->max_area = x;
}

/* ----------------------------------------------------------------- */

/** @brief Get minimum region area
** @param f MSER filter.
** @return minimum region area.
**/
float
mser_get_min_area(MserFilt const *f)
{
return(f->min_area);
}

/** @brief Set minimum region area
** @param f MSER filter.
** @param x minimum region area.
**/
void
mser_set_min_area(MserFilt *f, float x)
{
f->min_area = x;
}

/* ----------------------------------------------------------------- */

/** @brief Get maximum region variation
** @param f MSER filter.
** @return maximum region variation.
**/
float
mser_get_max_variation(MserFilt const *f)
{
return(f->max_variation);
}

/** @brief Set maximum region variation
** @param f MSER filter.
** @param x maximum region variation.
**/
void
mser_set_max_variation(MserFilt *f, float x)
{
f->max_variation = x;
}

/* ----------------------------------------------------------------- */

/** @brief Get maximally stable extremal regions
** @param f MSER filter.
** @return array of MSER pivots.
**/
unsigned int const *
mser_get_regions(MserFilt const* f)
{
return(f->mer);
}

/** @brief Get number of maximally stable extremal regions
** @param f MSER filter.
** @return number of MSERs.
**/
unsigned int
mser_get_regions_num(MserFilt const* f)
{
return(f->nmer);
}

/* ----------------------------------------------------------------- */

/** @brief Get ellipsoids
** @param f MSER filter.
** @return ellipsoids.
**/
float const *
mser_get_ell(MserFilt const* f)
{
return(f->ell);
}

/** @brief Get number of degrees of freedom of ellipsoids
** @param f MSER filter.
** @return number of degrees of freedom.
**/
unsigned int
mser_get_ell_dof(MserFilt const* f)
{
return(f->dof);
}

/** @brief Get number of ellipsoids
** @param f MSER filter.
** @return number of ellipsoids
**/
unsigned int
mser_get_ell_num(MserFilt const* f)
{
return(f->nell);
}

/*MSER */

/** -------------------------------------------------------------------
** @brief Advance N-dimensional subscript
**
** The function increments by one the subscript @a subs indexing an
** array the @a ndims dimensions @a dims.
**
** @param ndims number of dimensions.
** @param dims dimensions.
** @param subs subscript to advance.
**/

void adv(int ndims, int const *dims, int *subs)
{
int d = 0;
while (d < ndims)
{
if (++subs[d] < dims[d])
return;
subs[d++] = 0;
}
}

/** -------------------------------------------------------------------
** @brief Climb the region forest to reach aa root
**
** The function climbs the regions forest @a r starting from the node
** @a idx to the corresponding root.
**
** To speed-up the operation, the function uses the
** MserReg::shortcut field to quickly jump to the root. After the
** root is reached, all the used shortcut are updated.
**
** @param r regions' forest.
** @param idx stating node.
** @return index of the reached root.
**/

unsigned int climb(MserReg* r, unsigned int idx)
{
unsigned int    prev_idx = idx;
unsigned int    next_idx;
unsigned int    root_idx;

/* move towards root to find it */
while (1)
{
/* next jump to the root */
next_idx = r[idx].shortcut;

/* recycle shortcut to remember how we came here */
r[idx].shortcut = prev_idx;

/* stop if the root is found */
if (next_idx == idx)
break;

/* next guy */
prev_idx = idx;
idx = next_idx;
}

root_idx = idx;

/* move backward to update shortcuts */
while (1)
{
/* get previously visited one */
prev_idx = r[idx].shortcut;

/* update shortcut to point to the new root */
r[idx].shortcut = root_idx;

/* stop if the first visited node is reached */
if (prev_idx == idx)
break;

/* next guy */
idx = prev_idx;
}

return(root_idx);
}

/** -------------------------------------------------------------------
** @brief Create a new MSER filter
**
** Initializes a new MSER filter for images of the specified
** dimensions. Images are @a ndims -dimensional arrays of dimensions
** @a dims.
**
** @param ndims number of dimensions.
** @param dims  dimensions.
**/

MserFilt*
mser_new(int ndims, int const* dims)
{
MserFilt* f = (MserFilt *)calloc(sizeof(MserFilt), 1);

f->ndims = ndims;
f->dims = (int *)malloc(sizeof(int) * ndims);
f->subs = (int *)malloc(sizeof(int) * ndims);
f->dsubs = (int *)malloc(sizeof(int) * ndims);
f->strides = (int *)malloc(sizeof(int) * ndims);
/* shortcuts */
if (f->dims != NULL && f->subs != NULL && f->dsubs != NULL && f->strides != NULL)
{
int k = 0;

/* copy dims to f->dims */
memcpy(f->dims, dims, sizeof(int) * ndims);

/* compute strides to move into the N-dimensional image array */
f->strides[0] = 1;
for (k = 1; k < ndims; ++k)
{
f->strides[k] = f->strides[k - 1] * dims[k - 1];
}

/* total number of pixels */
f->nel = f->strides[ndims - 1] * dims[ndims - 1];

/* dof of ellipsoids */
f->dof = ndims * (ndims + 1) / 2 + ndims;

/* more buffers */
f->perm = (unsigned int *)malloc(sizeof(unsigned int) * f->nel);
f->joins = (unsigned int *)malloc(sizeof(unsigned int) * f->nel);
f->r = (MserReg *)malloc(sizeof(MserReg) * f->nel);

f->er = 0;
f->rer = 0;
f->mer = 0;
f->rmer = 0;
f->ell = 0;
f->rell = 0;

/* other parameters */
f->delta = 5;
f->max_area = 0.75f;
f->min_area = 3.0f / f->nel;
f->max_variation = 0.25f;
f->min_diversity = 0.2f;
}
return(f);
}

/** -------------------------------------------------------------------
** @brief Delete MSER filter
**
** The function releases the MSER filter @a f and all its resources.
**
** @param f MSER filter to be deleted.
**/

void
mser_delete(MserFilt* f)
{
if (f)
{
if (f->acc)
free(f->acc);
if (f->ell)
free(f->ell);

if (f->er)
free(f->er);
if (f->r)
free(f->r);
if (f->joins)
free(f->joins);
if (f->perm)
free(f->perm);

if (f->strides)
free(f->strides);
if (f->dsubs)
free(f->dsubs);
if (f->subs)
free(f->subs);
if (f->dims)
free(f->dims);

if (f->mer)
free(f->mer);
free(f);
}
}

#define MAX( x, y ) ( ( (x) > (y) ) ? (x) : (y) )

/** -------------------------------------------------------------------
** @brief Process image
**
** The functions calculates the Maximally Stable Extremal Regions
** (MSERs) of image @a im using the MSER filter @a f.
**
** The filter @a f must have been initialized to be compatible with
** the dimensions of @a im.
**
** @param f MSER filter.
** @param im image data.
**/

void
mser_process(MserFilt* f, unsigned char const* im)
{
/* shortcuts */
unsigned int    nel = f->nel;
unsigned int    *perm = f->perm;
unsigned int    *joins = f->joins;
int        ndims = f->ndims;
int        *dims = f->dims;
int        *subs = f->subs;
int        *dsubs = f->dsubs;
int        *strides = f->strides;
MserReg        *r = f->r;
MserExtrReg    *er = f->er;
unsigned int    *mer = f->mer;
int        delta = f->delta;

int    njoins = 0;
int    ner = 0;
int    nmer = 0;
int    nbig = 0;
int    nsmall = 0;
int    nbad = 0;
int    ndup = 0;

int i, j, k;

/* delete any previosuly computed ellipsoid */
f->nell = 0;

/* -----------------------------------------------------------------
*                                          Sort pixels by intensity
* -------------------------------------------------------------- */

{
unsigned int buckets[MSER_PIX_MAXVAL];

/* clear buckets */
memset(buckets, 0, sizeof(unsigned int) * MSER_PIX_MAXVAL);

/* compute bucket size (how many pixels for each intensity
* value) */
for (i = 0; i < (int)nel; ++i)
{
unsigned char v = im[i];
++buckets[v];
}

/* cumulatively add bucket sizes */
for (i = 1; i < MSER_PIX_MAXVAL; ++i)
{
buckets[i] += buckets[i - 1];
}

/* empty buckets computing pixel ordering */
for (i = nel; i >= 1; )
{
unsigned char    v = im[--i];
unsigned int    j = --buckets[v];
perm[j] = i;
}
}

/* initialize the forest with all void nodes */
for (i = 0; i < (int)nel; ++i)
{
r[i].parent = MSER_VOID_NODE;
}

/* -----------------------------------------------------------------
*                        Compute regions and count extremal regions
* -------------------------------------------------------------- */

/*
* In the following:
* idx    : index of the current pixel
* val    : intensity of the current pixel
* r_idx  : index of the root of the current pixel
* n_idx  : index of the neighbors of the current pixel
* nr_idx : index of the root of the neighbor of the current pixel
*/

/* process each pixel by increasing intensity */
for (i = 0; i < (int)nel; ++i)
{
/* pop next node xi */
unsigned int    idx = perm[i];
unsigned char    val = im[idx];
unsigned int    r_idx;

/* add the pixel to the forest as a root for now */
r[idx].parent = idx;
r[idx].shortcut = idx;
r[idx].area = 1;
r[idx].height = 1;

r_idx = idx;

/* convert the index IDX into the subscript SUBS; also initialize
* DSUBS to (-1,-1,...,-1) */
{
unsigned int temp = idx;
for (k = ndims - 1; k >= 0; --k)
{
dsubs[k] = -1;
subs[k] = temp / strides[k];
temp = temp % strides[k];
}
}

/* examine the neighbors of the current pixel */
while (1)
{
unsigned int    n_idx = 0;
int        good = 1;

/*
* Compute the neighbor subscript as NSUBS+SUB, the
* corresponding neighbor index NINDEX and check that the
* neighbor is within the image domain.
*/
for (k = 0; k < ndims && good; ++k)
{
int temp = dsubs[k] + subs[k];
good &= (0 <= temp) && (temp < dims[k]);
n_idx += temp * strides[k];
}

/*
* The neighbor should be processed if the following conditions
* are met:
* 1. The neighbor is within image boundaries.
* 2. The neighbor is indeed different from the current node
* (the opposite happens when DSUB=(0,0,...,0)).
* 3. The neighbor is already in the forest, meaning that it has
* already been processed.
*/
if (good &&
n_idx != idx &&
r[n_idx].parent != MSER_VOID_NODE)
{
unsigned char    nr_val = 0;
unsigned int    nr_idx = 0;
int        hgt = r[r_idx].height;
int        n_hgt = r[nr_idx].height;

/*
* Now we join the two subtrees rooted at
* R_IDX = ROOT(  IDX)
* NR_IDX = ROOT(N_IDX).
* Note that R_IDX = ROOT(IDX) might change as we process more
* neighbors, so we need keep updating it.
*/

r_idx = climb(r, idx);
nr_idx = climb(r, n_idx);

/*
* At this point we have three possibilities:
* (A) ROOT(IDX) == ROOT(NR_IDX). In this case the two trees
* have already been joined and we do not do anything.
* (B) I(ROOT(IDX)) == I(ROOT(NR_IDX)). In this case the pixel
* IDX is extending an extremal region with the same
* intensity value. Since ROOT(NR_IDX) will NOT be an
* extremal region of the full image, ROOT(IDX) can be
* safely added as children of ROOT(NR_IDX) if this
* reduces the height according to the union rank
* heuristic.
* (C) I(ROOT(IDX)) > I(ROOT(NR_IDX)). In this case the pixel
* IDX is starting a new extremal region. Thus ROOT(NR_IDX)
* WILL be an extremal region of the final image and the
* only possibility is to add ROOT(NR_IDX) as children of
* ROOT(IDX), which becomes parent.
*/

if (r_idx != nr_idx) /* skip if (A) */

{
nr_val = im[nr_idx];

if (nr_val == val && hgt < n_hgt)
{
/* ROOT(IDX) becomes the child */
r[r_idx].parent = nr_idx;
r[r_idx].shortcut = nr_idx;
r[nr_idx].area += r[r_idx].area;
r[nr_idx].height = MAX(n_hgt, hgt + 1);

joins[njoins++] = r_idx;
}
else {
/* cases ROOT(IDX) becomes the parent */
r[nr_idx].parent = r_idx;
r[nr_idx].shortcut = r_idx;
r[r_idx].area += r[nr_idx].area;
r[r_idx].height = MAX(hgt, n_hgt + 1);

joins[njoins++] = nr_idx;

/* count if extremal */
if (nr_val != val)
++ner;
}       /* check b vs c */
}               /* check a vs b or c */
}                       /* neighbor done */

/* move to next neighbor */
k = 0;
while (++dsubs[k] > 1)
{
dsubs[k++] = -1;
if (k == ndims)
goto done_all_neighbors;
}
} /* next neighbor */
done_all_neighbors:;
}        /* next pixel */

/* the last root is extremal too */
++ner;

/* save back */
f->njoins = njoins;

f->stats.num_extremal = ner;

/* -----------------------------------------------------------------
*                                          Extract extremal regions
* -------------------------------------------------------------- */

/*
* Extremal regions are extracted and stored into the array ER.  The
* structure R is also updated so that .SHORTCUT indexes the
* corresponding extremal region if any (otherwise it is set to
* VOID).
*/

/* make room */
if (f->rer < ner)
{
if (er)
free(er);
f->er = er = (MserExtrReg *)malloc(sizeof(MserExtrReg) * ner);
f->rer = ner;
}
;

/* save back */
f->nmer = ner;

/* count again */
ner = 0;

/* scan all regions Xi */
if (er != NULL)
{
for (i = 0; i < (int)nel; ++i)
{
/* pop next node xi */
unsigned int idx = perm[i];

unsigned char    val = im[idx];
unsigned int    p_idx = r[idx].parent;
unsigned char    p_val = im[p_idx];

/* is extremal ? */
int is_extr = (p_val > val) || idx == p_idx;

if (is_extr)
{
/* if so, add it */
er[ner].index = idx;
er[ner].parent = ner;
er[ner].value = im[idx];
er[ner].area = r[idx].area;

/* link this region to this extremal region */
r[idx].shortcut = ner;

/* increase count */
++ner;
}
else {
/* link this region to void */
r[idx].shortcut = MSER_VOID_NODE;
}
}
}

/* -----------------------------------------------------------------
*                                   Link extremal regions in a tree
* -------------------------------------------------------------- */

for (i = 0; i < ner; ++i)
{
unsigned int idx = er[i].index;

do
{
idx = r[idx].parent;
} while (r[idx].shortcut == MSER_VOID_NODE);

er[i].parent = r[idx].shortcut;
er[i].shortcut = i;
}

/* -----------------------------------------------------------------
*                            Compute variability of +DELTA branches
* -------------------------------------------------------------- */

/* For each extremal region Xi of value VAL we look for the biggest
* parent that has value not greater than VAL+DELTA. This is dubbed
* `top parent'. */

for (i = 0; i < ner; ++i)
{
/* Xj is the current region the region and Xj are the parents */
int    top_val = er[i].value + delta;
int    top = er[i].shortcut;

/* examine all parents */
while (1)
{
int    next = er[top].parent;
int    next_val = er[next].value;

/* Break if:
* - there is no node above the top or
* - the next node is above the top value.
*/
if (next == top || next_val > top_val)
break;

/* so next could be the top */
top = next;
}

/* calculate branch variation */
{
int    area = er[i].area;
int    area_top = er[top].area;
er[i].variation = (float)(area_top - area) / area;
er[i].max_stable = 1;
}

/* Optimization: since extremal regions are processed by
* increasing intensity, all next extremal regions being processed
* have value at least equal to the one of Xi. If any of them has
* parent the parent of Xi (this comprises the parent itself), we
* can safely skip most intermediate node along the branch and
* skip directly to the top to start our search. */
{
int    parent = er[i].parent;
int    curr = er[parent].shortcut;
er[parent].shortcut = MAX(top, curr);
}
}

/* -----------------------------------------------------------------
*                                  Select maximally stable branches
* -------------------------------------------------------------- */

nmer = ner;
for (i = 0; i < ner; ++i)
{
unsigned int    parent = er[i].parent;
unsigned char    val = er[i].value;
float        var = er[i].variation;
unsigned char    p_val = er[parent].value;
float        p_var = er[parent].variation;
unsigned int    loser;

/*
* Notice that R_parent = R_{l+1} only if p_val = val + 1. If not,
* this and the parent region coincide and there is nothing to do.
*/
if (p_val > val + 1)
continue;

/* decide which one to keep and put that in loser */
if (var < p_var)
loser = parent;
else loser = i;

/* make loser NON maximally stable */
if (er[loser].max_stable)
{
--nmer;
er[loser].max_stable = 0;
}
}

f->stats.num_unstable = ner - nmer;

/* -----------------------------------------------------------------
*                                                 Further filtering
* -------------------------------------------------------------- */

/* It is critical for correct duplicate detection to remove regions
* from the bottom (smallest one first).                          */
{
float    max_area = (float)f->max_area * nel;
float    min_area = (float)f->min_area * nel;
float    max_var = (float)f->max_variation;
float    min_div = (float)f->min_diversity;

/* scan all extremal regions (intensity value order) */
for (i = ner - 1; i >= 0L; --i)
{
/* process only maximally stable extremal regions */
if (!er[i].max_stable)
continue;

if (er[i].variation >= max_var)
{
++nbad;   goto remove;
}
if (er[i].area > max_area)
{
++nbig;   goto remove;
}
if (er[i].area < min_area)
{
++nsmall; goto remove;
}

/*
* Remove duplicates
*/
if (min_div < 1.0)
{
unsigned int    parent = er[i].parent;
int        area, p_area;
float        div;

/* check all but the root mser */
if ((int)parent != i)
{
/* search for the maximally stable parent region */
while (!er[parent].max_stable)
{
unsigned int next = er[parent].parent;
if (next == parent)
break;
parent = next;
}

/* Compare with the parent region; if the current and parent
* regions are too similar, keep only the parent. */
area = er[i].area;
p_area = er[parent].area;
div = (float)(p_area - area) / (float)p_area;

if (div < min_div)
{
++ndup; goto remove;
}
} /* remove dups end */
}
continue;
remove:
er[i].max_stable = 0;
--nmer;
}         /* check next region */

f->stats.num_abs_unstable = nbad;
f->stats.num_too_big = nbig;
f->stats.num_too_small = nsmall;
f->stats.num_duplicates = ndup;
}

/* -----------------------------------------------------------------
*                                                   Save the result
* -------------------------------------------------------------- */

/* make room */
if (f->rmer < nmer)
{
if (mer)
free(mer);
f->mer = mer = (unsigned int *)malloc(sizeof(unsigned int) * nmer);
f->rmer = nmer;
}

/* save back */
f->nmer = nmer;

j = 0;
if (er != NULL && mer != NULL)
{
for (i = 0; i < ner; ++i)
{
if (er[i].max_stable)
mer[j++] = er[i].index;
}
}
}

/** -------------------------------------------------------------------
** @brief Fit ellipsoids
**
** @param f MSER filter.
**
** @sa @ref mser-ell
**/

void
mser_ell_fit(MserFilt* f)
{
/* shortcuts */
int        nel = f->nel;
int        dof = f->dof;
int        *dims = f->dims;
int        ndims = f->ndims;
int        *subs = f->subs;
int        njoins = f->njoins;
unsigned int    *joins = f->joins;
MserReg        *r = f->r;
unsigned int    *mer = f->mer;
int        nmer = f->nmer;
mser_acc    *acc = f->acc;
mser_acc    *ell = f->ell;

int d, index, i, j;

/* already fit ? */
if (f->nell == f->nmer)
return;

/* make room */
if (f->rell < f->nmer)
{
if (f->ell)
free(f->ell);
f->ell = (float *)malloc(sizeof(float) * f->nmer * f->dof);
f->rell = f->nmer;
}

if (f->acc == 0)
{
f->acc = (float *)malloc(sizeof(float) * f->nel);
}

acc = f->acc;
ell = f->ell;

/* -----------------------------------------------------------------
*                                                 Integrate moments
* -------------------------------------------------------------- */

/* for each dof */
for (d = 0; d < f->dof; ++d)
{
/* start from the upper-left pixel (0,0,...,0) */
memset(subs, 0, sizeof(int) * ndims);

/* step 1: fill acc pretending that each region has only one pixel */
if (d < ndims)
{
/* 1-order ................................................... */

for (index = 0; index < nel; ++index)
{
acc[index] = (float)subs[d];
adv(ndims, dims, subs);
}
}
else {
/* 2-order ................................................... */

/* map the dof d to a second order moment E[x_i x_j] */
i = d - ndims;
j = 0;
while (i > j)
{
i -= j + 1;
j++;
}
/* initialize acc with  x_i * x_j */
for (index = 0; index < nel; ++index)
{
acc[index] = (float)(subs[i] * subs[j]);
adv(ndims, dims, subs);
}
}

/* step 2: integrate */
for (i = 0; i < njoins; ++i)
{
unsigned int    index = joins[i];
unsigned int    parent = r[index].parent;
acc[parent] += acc[index];
}

/* step 3: save back to ellpises */
for (i = 0; i < nmer; ++i)
{
unsigned int idx = mer[i];
ell[d + dof * i] = acc[idx];
}
} /* next dof */

/* -----------------------------------------------------------------
*                                           Compute central moments
* -------------------------------------------------------------- */

for (index = 0; index < nmer; ++index)
{
float        *pt = ell + index * dof;
unsigned int    idx = mer[index];
float        area = (float)r[idx].area;

for (d = 0; d < dof; ++d)
{
pt[d] /= area;

if (d >= ndims)
{
/* remove squared mean from moment to get variance */
i = d - ndims;
j = 0;
while (i > j)
{
i -= j + 1;
j++;
}
pt[d] -= pt[i] * pt[j];
}
}
}

/* save back */
f->nell = nmer;
}

void drawEllipse(const float * region, int width, int height, int depth, unsigned char*  bits, const uint8_t * color)
{
/* Centroid (mean) */
const float    x = region[0];
const float    y = region[1];

/* Covariance matrix [a b; b c] */
const float    a = region[2];
const float    b = region[3];
const float    c = region[4];

/* Eigenvalues of the covariance matrix */
const float    d = a + c;
const float    e = a - c;
const float    f = sqrtf(4.0f * b * b + e * e);
const float    e0 = (d + f) / 2.0f;       /* First eigenvalue */
const float    e1 = (d - f) / 2.0f;       /* Second eigenvalue */

/* Desired norm of the eigenvectors */
const float    e0sq = sqrtf(e0);
const float    e1sq = sqrtf(e1);

/* Eigenvectors */
float    v0x = e0sq;
float    v0y = 0.0f;
float    v1x = 0.0f;
float    v1y = e1sq;

if (b)
{
v0x = e0 - c;
v0y = b;
v1x = e1 - c;
v1y = b;

/* Normalize the eigenvectors */
const float n0 = e0sq / sqrtf(v0x * v0x + v0y * v0y);
v0x *= n0;
v0y *= n0;

const float n1 = e1sq / sqrtf(v1x * v1x + v1y * v1y);
v1x *= n1;
v1y *= n1;
}

for (float t = 0.0f; t < 2.0f * M_PI; t += 0.001f)
{
int    x2 = (int)(x + (cosf(t) * v0x + sinf(t) * v1x) * 2.0f + 0.5f);
int    y2 = (int)(y + (cosf(t) * v0y + sinf(t) * v1y) * 2.0f + 0.5f);

if ((x2 >= 0) && (x2 < width) && (y2 >= 0) && (y2 < height))
for (int i = 0; i < min(depth, 3); ++i)
bits[(y2 * width + x2) * depth + i] = color[i];
}
}

/** @brief MSER driver entry point
**/
int
main(int argc, char **argv)
{
/* algorithm parameters */
float    delta = 2;
float    max_area = 0.5f;
float    min_area = 0.0001f;
float    max_variation = 0.5f;
float    min_diversity = 0.33f;
int    dark_on_bright = 1;

bool        err = false;
char        err_msg[1024];
int        exit_code = 0;
MserFilt    *filt = 0;
MserFilt    *filtinv = 0;

unsigned int const    *regions;
unsigned int const    *regionsinv;
float const        *frames;
float const        *framesinv;
enum { ndims = 2 };
int    dims[ndims];
int    nregions = 0, nregionsinv = 0, nframes = 0, nframesinv = 0;
int    i, dof;

if (argc != 3)
{
fprintf
(stderr,
"Usage: %s input.jpg output.jpg\n",
argv[0]);
return(-1);
}
char    * inputfile = argv[1];
char    * outputfile = argv[2];

int        width;
int        height;
int        depth;
unsigned char    * data = loadImage(inputfile, &width, &height, &depth);

unsigned char *datainv = NULL;
if (!data)
{
err = false;
snprintf(err_msg, sizeof(err_msg),
"Could not allocate enough memory.");
goto done;
}
dims[0] = width;
dims[1] = height;

filt = mser_new(ndims, dims);
filtinv = mser_new(ndims, dims);

if (!filt || !filtinv)
{
snprintf(err_msg, sizeof(err_msg),
"Could not create an MSER filter.");
goto done;
}

if (delta >= 0)
mser_set_delta(filt, (unsigned char)delta);
if (max_area >= 0)
mser_set_max_area(filt, max_area);
if (min_area >= 0)
mser_set_min_area(filt, min_area);
if (max_variation >= 0)
mser_set_max_variation(filt, max_variation);
if (min_diversity >= 0)
mser_set_min_diversity(filt, min_diversity);
if (delta >= 0)
mser_set_delta(filtinv, (unsigned char)delta);
if (max_area >= 0)
mser_set_max_area(filtinv, max_area);
if (min_area >= 0)
mser_set_min_area(filtinv, min_area);
if (max_variation >= 0)
mser_set_max_variation(filtinv, max_variation);
if (min_diversity >= 0)
mser_set_min_diversity(filtinv, min_diversity);

printf("mser: parameters:\n");
printf("mser:   delta         = %d\n", mser_get_delta(filt));
printf("mser:   max_area      = %g\n", mser_get_max_area(filt));
printf("mser:   min_area      = %g\n", mser_get_min_area(filt));
printf("mser:   max_variation = %g\n", mser_get_max_variation(filt));
printf("mser:   min_diversity = %g\n", mser_get_min_diversity(filt));

if (dark_on_bright)
{
double startTime = now();
mser_process(filt, (unsigned char *)data);
double nProcessTime = calcElapsed(startTime, now());
printf("Elapsed: %d ms \n ", (int)(nProcessTime * 1000));
/* Save result  ----------------------------------------------- */
nregions = mser_get_regions_num(filt);
regions = mser_get_regions(filt);

printf("nregions: %d \t", nregions);

/*
* for (i = 0; i < nregions; ++i) {
* printf(" %d \t", regions[i]);
* }
*/
mser_ell_fit(filt);

nframes = mser_get_ell_num(filt);
dof = mser_get_ell_dof(filt);

printf("dof: %d \t", dof);
printf("nframes: %d \t", nframes);
/* Draw ellipses in the original image */
const uint8_t colors[3] = { 127, 127, 127 };
for (int x = 0; x < 2; ++x)
{
frames = mser_get_ell(filt);
for (i = 0; i < nframes; ++i)
{
drawEllipse(frames, width, height, depth, data, colors);
frames += dof;
}
}
saveJpeg(outputfile, width, height, depth, data);
}
else {
/* allocate buffer */
datainv = (unsigned char *)malloc(width * height * depth);
for (i = 0; i < width * height * depth; i++)
{
datainv[i] = ~data[i]; /* 255 - data[i] */
}

if (!datainv)
{
err = false;
snprintf(err_msg, sizeof(err_msg),
"Could not allocate enough memory.");
goto done;
}
double startTime = now();
mser_process(filtinv, (unsigned char *)datainv);
double nProcessTime = calcElapsed(startTime, now());
printf("Elapsed: %d ms \n ", (int)(nProcessTime * 1000));
/* Save result  ----------------------------------------------- */
nregionsinv = mser_get_regions_num(filtinv);
regionsinv = mser_get_regions(filtinv);

/*
* for (i = 0; i < nregionsinv; ++i) {
* printf("%d \t ", -regionsinv[i]);
* }
*/

mser_ell_fit(filtinv);

nframesinv = mser_get_ell_num(filtinv);
dof = mser_get_ell_dof(filtinv);

const uint8_t colors[3] = { 0, 0, 0 };

framesinv = mser_get_ell(filtinv);
for (i = 0; i < nframesinv; ++i)
{
drawEllipse(framesinv, width, height, depth, data, colors);
framesinv += dof;
}
saveJpeg(outputfile, width, height, depth, data);
}

/* Next guy  ----------------------------------------------- */
done:
/* release filter */
if (filt)
{
mser_delete(filt);
filt = 0;
}
if (filtinv)
{
mser_delete(filtinv);
filtinv = 0;
}

/* release image data */
if (data)
{
free(data);
data = 0;
}
if (datainv)
{
free(datainv);
datainv = 0;
}

/* if bad print error message */
if (err)
{
fprintf
(stderr,
"mser: err: %s (%d)\n",
err_msg,
err);
exit_code = 1;
}
/* quit */
return(exit_code);
}


算法有两种模式,白底黑字,白字黑底,可根据具体需求进行开关。

可参照《图片文档倾斜矫正算法 附完整c代码》中判断是否为文本图片的方式进行算法思路的改进。

效果图例:









以上,再一次抛砖引玉。

若有其他相关问题或者需求也可以邮件联系俺探讨。

邮箱地址是:
gaozhihan@vip.qq.com
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: