您的位置:首页 > 编程语言 > Java开发

HashMap原理分析及JDK1.8性能优化

2018-01-23 17:33 225 查看

HashMap是java中一个重要概念,其源码部分研究起来也非常有意思,这里做下总结。本文中1-4的原文链接是: http://blog.csdn.net/vking_wang/article/details/14166593

1、HashMap的数据结构

数据结构中有数组和链表来实现对数据的存储,但这两者基本上是两个极端。

数组

数组存储区间是连续的,占用内存严重,故空间复杂的很大。但数组的二分查找时间复杂度小,为O(1);数组的特点是:寻址容易,插入和删除困难;

链表

链表存储区间离散,占用内存比较宽松,故空间复杂度很小,但时间复杂度很大,达O(N)。链表的特点是:寻址困难,插入和删除容易。

哈希表

那么我们能不能综合两者的特性,做出一种寻址容易,插入删除也容易的数据结构?答案是肯定的,这就是我们要提起的哈希表。哈希表((Hash
table)既满足了数据的查找方便,同时不占用太多的内容空间,使用也十分方便。  哈希表有多种不同的实现方法,我接下来解释的是最常用的一种方法—— 拉链法,我们可以理解为“链表的数组” ,如图:





  从上图我们可以发现哈希表是由数组+链表组成的,一个长度为16的数组中,每个元素存储的是一个链表的头结点。那么这些元素是按照什么样的规则存储到数组中呢。一般情况是通过hash(key)%len获得,也就是元素的key的哈希值对数组长度取模得到。比如上述哈希表中,12%16=12,28%16=12,108%16=12,140%16=12。所以12、28、108以及140都存储在数组下标为12的位置。  HashMap其实也是一个线性的数组实现的,所以可以理解为其存储数据的容器就是一个线性数组。这可能让我们很不解,一个线性的数组怎么实现按键值对来存取数据呢?这里HashMap有做一些处理。  首先HashMap里面实现一个静态内部类Entry,其重要的属性有 key , value, next,从属性key,value我们就能很明显的看出来Entry就是HashMap键值对实现的一个基础bean,我们上面说到HashMap的基础就是一个线性数组,这个数组就是Entry[],Map里面的内容都保存在Entry[]里面。    /**     * The table, resized as necessary. Length MUST Always be a power of two.     */    transient Entry[] table;

2、HashMap的存取实现

     既然是线性数组,为什么能随机存取?这里HashMap用了一个小算法,大致是这样实现:
// 存储时:
int hash = key.hashCode(); // 这个hashCode方法这里不详述,只要理解每个key的hash是一个固定的int值
int index = hash % Entry[].length;
Entry[index] = value;

// 取值时:
int hash = key.hashCode();
int index = hash % Entry[].length;
return Entry[index]; 

1)put

 疑问:如果两个key通过hash%Entry[].length得到的index相同,会不会有覆盖的危险?  这里HashMap里面用到链式数据结构的一个概念。上面我们提到过Entry类里面有一个next属性,作用是指向下一个Entry。打个比方, 第一个键值对A进来,通过计算其key的hash得到的index=0,记做:Entry[0] = A。一会后又进来一个键值对B,通过计算其index也等于0,现在怎么办?HashMap会这样做:B.next = A,Entry[0] = B,如果又进来C,index也等于0,那么C.next = B,Entry[0] = C;这样我们发现index=0的地方其实存取了A,B,C三个键值对,他们通过next这个属性链接在一起。所以疑问不用担心。也就是说数组中存储的是最后插入的元素。到这里为止,HashMap的大致实现,我们应该已经清楚了。 public V put(K key, V value) {        if (key == null)            return putForNullKey(value); //null总是放在数组的第一个链表中        int hash = hash(key.hashCode());        int i = indexFor(hash, table.length);        //遍历链表        for (Entry<K,V> e = table[i]; e != null; e = e.next) {            Object k;            //如果key在链表中已存在,则替换为新value            if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {                V oldValue = e.value;                e.value = value;                e.recordAccess(this);                return oldValue;            }        }        modCount++;        addEntry(hash, key, value, i);        return null;    } void addEntry(int hash, K key, V value, int bucketIndex) {    Entry<K,V> e = table[bucketIndex];    table[bucketIndex] = new Entry<K,V>(hash, key, value, e); //参数e, 是Entry.next    //如果size超过threshold,则扩充table大小。再散列    if (size++ >= threshold)            resize(2 * table.length);}  当然HashMap里面也包含一些优化方面的实现,这里也说一下。比如:Entry[]的长度一定后,随着map里面数据的越来越长,这样同一个index的链就会很长,会不会影响性能?HashMap里面设置一个因子,随着map的size越来越大,Entry[]会以一定的规则加长长度。

2)get

 public V get(Object key) {        if (key == null)            return getForNullKey();        int hash = hash(key.hashCode());        //先定位到数组元素,再遍历该元素处的链表        for (Entry<K,V> e = table[indexFor(hash, table.length)];             e != null;             e = e.next) {            Object k;            if (e.hash == hash && ((k = e.key) == key || key.equals(k)))                return e.value;        }        return null;} 

3)null key的存取

null key总是存放在Entry[]数组的第一个元素。   private V putForNullKey(V value) {        for (Entry<K,V> e = table[0]; e != null; e = e.next) {            if (e.key == null) {                V oldValue = e.value;                e.value = value;                e.recordAccess(this);                return oldValue;            }        }        modCount++;        addEntry(0, null, value, 0);        return null;    }     private V getForNullKey() {        for (Entry<K,V> e = table[0]; e != null; e = e.next) {            if (e.key == null)                return e.value;        }        return null;    }  

4)确定数组index:hashcode % table.length取模

HashMap存取时,都需要计算当前key应该对应Entry[]数组哪个元素,即计算数组下标;算法如下:   /**     * Returns index for hash code h.     */    static int indexFor(int h, int length) {        return h & (length-1);    } 按位取并,作用上相当于取模mod或者取余%。这意味着数组下标相同,并不表示hashCode相同。 

5)table初始大小

  public HashMap(int initialCapacity, float loadFactor) {        .....        // Find a power of 2 >= initialCapacity        int capacity = 1;        while (capacity < initialCapacity)            capacity <<= 1;        this.loadFactor = loadFactor;        threshold = (int)(capacity * loadFactor);        table = new Entry[capacity];        init();    } 注意table初始大小并不是构造函数中的initialCapacity!!而是 >= initialCapacity的2的n次幂!!!!————为什么这么设计呢?——

3、解决hash冲突的办法

开放定址法(线性探测再散列,二次探测再散列,伪随机探测再散列)
再哈希法
链地址法
建立一个公共溢出区
Java中hashmap的解决办法就是采用的链地址法。 

4、再散列rehash过程

当哈希表的容量超过默认容量时,必须调整table的大小。当容量已经达到最大可能值时,那么该方法就将容量调整到Integer.MAX_VALUE返回,这时,需要创建一张新表,将原表的映射到新表中。   /**     * Rehashes the contents of this map into a new array with a     * larger capacity.  This method is called automatically when the     * number of keys in this map reaches its threshold.     *     * If current capacity is MAXIMUM_CAPACITY, this method does not     * resize the map, but sets threshold to Integer.MAX_VALUE.     * This has the effect of preventing future calls.     *     * @param newCapacity the new capacity, MUST be a power of two;     *        must be greater than current capacity unless current     *        capacity is MAXIMUM_CAPACITY (in which case value     *        is irrelevant).     */    void resize(int newCapacity) {        Entry[] oldTable = table;        int oldCapacity = oldTable.length;        if (oldCapacity == MAXIMUM_CAPACITY) {            threshold = Integer.MAX_VALUE;            return;        }        Entry[] newTable = new Entry[newCapacity];        transfer(newTable);        table = newTable;        threshold = (int)(newCapacity * loadFactor);    }     /**     * Transfers all entries from current table to newTable.     */    void transfer(Entry[] newTable) {        Entry[] src = table;        int newCapacity = newTable.length;        for (int j = 0; j < src.length; j++) {            Entry<K,V> e = src[j];            if (e != null) {                src[j] = null;                do {                    Entry<K,V> next = e.next;                    //重新计算index                    int i = indexFor(e.hash, newCapacity);                    e.next = newTable[i];                    newTable[i] = e;                    e = next;                } while (e != null);            }        }    }

5、JDK1.8中HashMap的性能优化

JDK1.8在JDK1.7的基础上针对一个链上数据过多(即拉链过长的情况)导致性能下降,增加了红黑树来进行优化。即当链表超过8时,链表就转换为红黑树,利用红黑树快速增删改查的特点提高HashMap的性能,其中会用到红黑树的插入、删除、查找等算法。
当插入新元素时,对于红黑树的判断,我们可以结合JDK1.8的HashMap的put方法源码来具体分析:
public V put(K key, V value) {     // 对key的hashCode()做hash    return putVal(hash(key), key, value, false, true);  }  final V putVal(int hash, K key, V value, boolean onlyIfAbsent,                 boolean evict) {     Node<K,V>[] tab; Node<K,V> p; int n, i;     //①:如果tab为null则创建     if((tab = table) == null || (n = tab.length) == 0)        n = (tab = resize()).length;     //②:计算index,并对null做处理     if((p = tab[i = (n - 1) & hash]) == null)        tab[i] = newNode(hash, key, value, null);    else {        Node<K,V> e; K k;        // ③:如果节点key存在,则直接覆盖value        if (p.hash == hash &&            ((k = p.key) == key || (key != null && key.equals(k))))            e = p;        // ④:判断该链p是否是红黑树,如果是红黑树,则直接在树中插入键值对,否则转向下面        else if (p instanceof TreeNode)            e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);        // ⑤:该链为链表遍历p,判断链表长度是否大于8,如果大于8的话把链表转换为红黑树,在红黑树中执行插入操作,否则进行链表的插入操作        else {            for (int binCount = 0; ; ++binCount) {                 if ((e = p.next) == null) {                    p.next = newNode(hash,key,value,null);                   //链表长度大于8转换为红黑树进行处理                     if (binCount >=TREEIFY_THRESHOLD - 1)                          treeifyBin(tab, hash);                     break;                 }             //遍历过程中若发现key已经存在直接覆盖value即可                 if (e.hash == hash &&                     ((k = e.key) == key ||(key != null && key.equals(k))))                    p = e;            }         }        if (e != null) { // existing mapping for key            V oldValue = e.value;            if (!onlyIfAbsent || oldValue == null)                 e.value = value;            afterNodeAccess(e);            return oldValue;        }     }    ++modCount;     //⑥:超过最大容量则扩容     if(++size > threshold)        resize();    afterNodeInsertion(evict);    return null;}
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: