您的位置:首页 > 编程语言 > Java开发

深入浅出Java垃圾回收机制

2018-01-19 00:00 295 查看

简述

虚拟机中的共划分为三个代:年轻代(Young Generation)、老年代(Old Generation)和持久代(Permanent Generation)。其中持久代主要存放的是Java类的类信息,与垃圾收集要收集的Java对象关系不大。年轻代和年老代的划分是对垃圾收集影响比较大的。

jvm内存参数

-vmargs -Xms128M -Xmx512M -XX:PermSize=64M -XX:MaxPermSize=128M
-vmargs 说明后面是VM的参数,所以后面的其实都是JVM的参数了
-Xms128m JVM初始分配的堆内存
-Xmx512m JVM最大允许分配的堆内存,按需分配
-XX:PermSize=64M JVM初始分配的非堆内存
-XX:MaxPermSize=128M JVM最大允许分配的非堆内存,按需分配

按代的垃圾回收机制

在Java中,开发人员无法直接在程序代码中清理内存,而是由垃圾回收器自动寻找不必要的垃圾对象,并且清理掉他们。垃圾回收器会在下面两种假设(hypotheses)成立的情况下被创建(称之为假设不如改为推测(suppositions)或者前提(preconditions))。

大多数对象会很快变得不可达。

只有很少的由老对象(创建时间较长的对象)指向新生对象的引用。

这些假设我们称之为弱年代假设( weak generational hypothesis)。为了强化这一假设,HotSpot虚拟机将其物理上划分为两个–新生代(young generation)和老年代(old generation)。

新生代(Young generation): 绝大多数最新被创建的对象会被分配到这里,由于大部分对象在创建后会很快变得不可到达,所以很多对象被创建在新生代,然后消失。对象从这个区域消失的过程我们称之为”minor GC“。

老年代(Old generation): 对象没有变得不可达,并且从新生代中存活下来,会被拷贝到这里。其所占用的空间要比新生代多。也正由于其相对较大的空间,发生在老年代上的GC要比新生代少得多。对象从老年代中消失的过程,我们称之为”major GC“(或者”full GC“)

请看下面这个图表。



上图中的持久代( permanent generation )也被称为方法区(method area)。他用来保存类常量以及字符串常量。因此,这个区域不是用来永久的存储那些从老年代存活下来的对象。这个区域也可能发生GC。并且发生在这个区域上的GC事件也会被算为major GC。

如果老年代的对象需要引用一个新生代的对象,会发生什么呢?

为了解决这个问题,老年代中存在一个”card table“,他是一个512 byte大小的块。所有老年代的对象指向新生代对象的引用都会被记录在这个表中。当针对新生代执行GC的时候,只需要查询card table来决定是否可以被收集,而不用查询整个老年代。这个card table由一个write barrier来管理。write barrier给GC带来了很大的性能提升,虽然由此可能带来一些开销,但GC的整体时间被显著的减少。



新生代的空间

新生代是用来保存那些第一次被创建的对象,他可以被分为三个空间:

一个伊甸园空间(Eden )

两个幸存者空间(Survivor )

一共有三个空间,其中包含两个幸存者空间。每个空间的执行顺序如下:

绝大多数刚刚被创建的对象会存放在伊甸园空间。

在伊甸园空间执行了第一次GC之后,存活的对象被移动到其中一个幸存者空间。

此后,在伊甸园空间执行GC之后,存活的对象会被堆积在同一个幸存者空间。

当一个幸存者空间饱和,还在存活的对象会被移动到另一个幸存者空间。之后会清空已经饱和的那个幸存者空间。

在以上的步骤中重复几次依然存活的对象,就会被移动到老年代。

如果你仔细观察这些步骤就会发现,其中一个幸存者空间必须保持是空的。如果两个幸存者空间都有数据,或者两个空间都是空的,那一定标志着你的系统出现了某种错误。
通过频繁的minor GC将数据移动到老年代的过程可以用下图来描述:



需要注意的是HotSpot虚拟机使用了两种技术来加快内存分配。他们分别是是”bump-the-pointer“和“TLABs(Thread-Local Allocation Buffers)”。

Bump-the-pointer技术跟踪在伊甸园空间创建的最后一个对象。这个对象会被放在伊甸园空间的顶部。如果之后再需要创建对象,只需要检查伊甸园空间是否有足够的剩余空间。如果有足够的空间,对象就会被创建在伊甸园空间,并且被放置在顶部。这样以来,每次创建新的对象时,只需要检查最后被创建的对象。这将极大地加快内存分配速度。但是,如果我们在多线程的情况下,事情将截然不同。如果想要以线程安全的方式以多线程在伊甸园空间存储对象,不可避免的需要加锁,而这将极大地的影响性能。

TLABs 是HotSpot虚拟机针对这一问题的解决方案。该方案为每一个线程在伊甸园空间分配一块独享的空间,这样每个线程只访问他们自己的TLAB空间,再与bump-the-pointer技术结合可以在不加锁的情况下分配内存。

老年代GC处理机制

JDK7一共有5种GC类型:

Serial GC

Parallel GC

Parallel Old GC (Parallel Compacting GC)

Concurrent Mark & Sweep GC (or “CMS”)

Garbage First (G1) GC

1. Serial GC (-XX:+UseSerialGC)

新生代空间的GC方式我们在前面已经介绍过了,在老年代空间中的GC采取称之为”mark-sweep-compact“的算法。

算法的第一步是标记老年代中依然存活对象。(标记)

第二步,从头开始检查堆内存空间,并且只留下依然幸存的对象。(清理)

最后一步,从头开始,顺序地填满堆内存空间,并且将对内存空间分成两部分:一个保存着对象,另一个空着(压缩)。

2. Parallel GC (-XX:+UseParallelGC)



从上图中,你可以轻易地看出serial GC和parallel GC的区别,serial GC只使用一个线程执行GC,而parallel GC使用多个线程,因此parallel GC更高效。这种GC在内存充足以及多核的情况下会很有用,因此我们也称之为”throughput GC“。

3. Parallel Old GC(-XX:+UseParallelOldGC)

Parallel Old GC在JDK5之后出现。与parallel GC相比,唯一的区别在于针对老年代的GC算法。Parallel Old GC分为三步:标记-汇总-压缩(mark – summary – compaction)。汇总(summary)步骤与清理(sweep)的不同之处在于,其将依然幸存的对象分发到GC预先处理好的不同区域,算法相对清理来说略微复杂一点。
###4. CMS GC (-XX:+UseConcMarkSweepGC)



第一步初始化标记(initial mark) 比较简单。这一步骤只是查找那些距离类加载器最近的幸存对象。因此,停顿的时间非常短暂。在之后的并行标记( concurrent mark )步骤,所有被幸存对象引用的对象会被确认是否已经被追踪和校验。这一步的不同之处在于,在标记的过程中,其他的线程依然在执行。在重新标记(remark)步骤,会再次检查那些在并行标记步骤中增加或者删除的与幸存对象引用的对象。最后,在并行交换( concurrent sweep )步骤,转交垃圾回收过程处理。垃圾回收工作会在其他线程的执行过程中展开。一旦采取了这种GC类型,由GC导致的暂停时间会极其短暂。CMS GC也被称为低延迟GC。它经常被用在那些对于响应时间要求十分苛刻的应用之上。

当然,这种GC类型在拥有stop-the-world时间很短的优点的同时,也有如下缺点:

它会比其他GC类型占用更多的内存和CPU

默认情况下不支持压缩步骤
在使用这个GC类型之前你需要慎重考虑。如果因为内存碎片过多而导致压缩任务不得不执行,那么stop-the-world的时间要比其他任何GC类型都长,你需要考虑压缩任务的发生频率以及执行时间。

5. G1 GC 一种全新的内存模型

G1算法将堆划分为若干个区域(Region),它仍然属于分代收集器。不过,这些区域的一部分包含新生代,新生代的垃圾收集依然采用暂停所有应用线程的方式,将存活对象拷贝到老年代或者Survivor空间。老年代也分成很多区域,G1收集器通过将对象从一个区域复制到另外一个区域,完成了清理工作。这就意味着,在正常的处理过程中,G1完成了堆的压缩(至少是部分堆的压缩),这样也就不会有cms内存碎片问题的存在了。
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: