您的位置:首页 > 数据库 > Redis

redis 源码 ziplist.c 压缩list的实现

2018-01-18 11:18 555 查看
ziplist.c代码实现:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdint.h>
#include <limits.h>
#include "zmalloc.h"
#include "util.h"
#include "ziplist.h"
#include "endianconv.h"
#include "redisassert.h"

#define ZIP_END 255
#define ZIP_BIGLEN 254

/* Different encoding/length possibilities */
#define ZIP_STR_MASK 0xc0
#define ZIP_INT_MASK 0x30
#define ZIP_STR_06B (0 << 6)
#define ZIP_STR_14B (1 << 6)
#define ZIP_STR_32B (2 << 6)
#define ZIP_INT_16B (0xc0 | 0<<4)
#define ZIP_INT_32B (0xc0 | 1<<4)
#define ZIP_INT_64B (0xc0 | 2<<4)
#define ZIP_INT_24B (0xc0 | 3<<4)
#define ZIP_INT_8B 0xfe
/* 4 bit integer immediate encoding */
#define ZIP_INT_IMM_MASK 0x0f
#define ZIP_INT_IMM_MIN 0xf1 /* 11110001 */
#define ZIP_INT_IMM_MAX 0xfd /* 11111101 */
#define ZIP_INT_IMM_VAL(v) (v & ZIP_INT_IMM_MASK)

#define INT24_MAX 0x7fffff
#define INT24_MIN (-INT24_MAX - 1)

/* Macro to determine type */
#define ZIP_IS_STR(enc) (((enc) & ZIP_STR_MASK) < ZIP_STR_MASK)

/* Utility macros */
#define ZIPLIST_BYTES(zl) (*((uint32_t*)(zl)))
#define ZIPLIST_TAIL_OFFSET(zl) (*((uint32_t*)((zl)+sizeof(uint32_t))))
#define ZIPLIST_LENGTH(zl) (*((uint16_t*)((zl)+sizeof(uint32_t)*2)))
#define ZIPLIST_HEADER_SIZE (sizeof(uint32_t)*2+sizeof(uint16_t))
#define ZIPLIST_ENTRY_HEAD(zl) ((zl)+ZIPLIST_HEADER_SIZE)
#define ZIPLIST_ENTRY_TAIL(zl) ((zl)+intrev32ifbe(ZIPLIST_TAIL_OFFSET(zl)))
#define ZIPLIST_ENTRY_END(zl) ((zl)+intrev32ifbe(ZIPLIST_BYTES(zl))-1)

/* We know a positive increment can only be 1 because entries can only be
* pushed one at a time. */
#define ZIPLIST_INCR_LENGTH(zl,incr) { \
if (ZIPLIST_LENGTH(zl) < UINT16_MAX) \
ZIPLIST_LENGTH(zl) = intrev16ifbe(intrev16ifbe(ZIPLIST_LENGTH(zl))+incr); \
}

typedef struct zlentry {
unsigned int prevrawlensize, prevrawlen;
unsigned int lensize, len;
unsigned int headersize;
unsigned char encoding;
unsigned char *p;
} zlentry;

/* Extract the encoding from the byte pointed by 'ptr' and set it into
* 'encoding'. */
#define ZIP_ENTRY_ENCODING(ptr, encoding) do { \
(encoding) = (ptr[0]); \
if ((encoding) < ZIP_STR_MASK) (encoding) &= ZIP_STR_MASK; \
} while(0)

/* Return bytes needed to store integer encoded by 'encoding' */
static unsigned int zipIntSize(unsigned char encoding) {
switch(encoding) {
case ZIP_INT_8B: return 1;
case ZIP_INT_16B: return 2;
case ZIP_INT_24B: return 3;
case ZIP_INT_32B: return 4;
case ZIP_INT_64B: return 8;
default: return 0; /* 4 bit immediate */
}
assert(NULL);
return 0;
}

/* Encode the length 'rawlen' writing it in 'p'. If p is NULL it just returns
* the amount of bytes required to encode such a length. */
static unsigned int zipEncodeLength(unsigned char *p, unsigned char encoding, unsigned int rawlen) {
unsigned char len = 1, buf[5];

if (ZIP_IS_STR(encoding)) {
/* Although encoding is given it may not be set for strings,
* so we determine it here using the raw length. */
if (rawlen <= 0x3f) {
if (!p) return len;
buf[0] = ZIP_STR_06B | rawlen;
} else if (rawlen <= 0x3fff) {
len += 1;
if (!p) return len;
buf[0] = ZIP_STR_14B | ((rawlen >> 8) & 0x3f);
buf[1] = rawlen & 0xff;
} else {
len += 4;
if (!p) return len;
buf[0] = ZIP_STR_32B;
buf[1] = (rawlen >> 24) & 0xff;
buf[2] = (rawlen >> 16) & 0xff;
buf[3] = (rawlen >> 8) & 0xff;
buf[4] = rawlen & 0xff;
}
} else {
/* Implies integer encoding, so length is always 1. */
if (!p) return len;
buf[0] = encoding;
}

/* Store this length at p */
memcpy(p,buf,len);
return len;
}

/* Decode the length encoded in 'ptr'. The 'encoding' variable will hold the
* entries encoding, the 'lensize' variable will hold the number of bytes
* required to encode the entries length, and the 'len' variable will hold the
* entries length. */
#define ZIP_DECODE_LENGTH(ptr, encoding, lensize, len) do { \
ZIP_ENTRY_ENCODING((ptr), (encoding)); \
if ((encoding) < ZIP_STR_MASK) { \
if ((encoding) == ZIP_STR_06B) { \
(lensize) = 1; \
(len) = (ptr)[0] & 0x3f; \
} else if ((encoding) == ZIP_STR_14B) { \
(lensize) = 2; \
(len) = (((ptr)[0] & 0x3f) << 8) | (ptr)[1]; \
} else if (encoding == ZIP_STR_32B) { \
(lensize) = 5; \
(len) = ((ptr)[1] << 24) | \
((ptr)[2] << 16) | \
((ptr)[3] << 8) | \
((ptr)[4]); \
} else { \
assert(NULL); \
} \
} else { \
(lensize) = 1; \
(len) = zipIntSize(encoding); \
} \
} while(0);

/* Encode the length of the previous entry and write it to "p". Return the
* number of bytes needed to encode this length if "p" is NULL. */
static unsigned int zipPrevEncodeLength(unsigned char *p, unsigned int len) {
if (p == NULL) {
return (len < ZIP_BIGLEN) ? 1 : sizeof(len)+1;
} else {
if (len < ZIP_BIGLEN) {
p[0] = len;
return 1;
} else {
p[0] = ZIP_BIGLEN;
memcpy(p+1,&len,sizeof(len));
memrev32ifbe(p+1);
return 1+sizeof(len);
}
}
}

/* Encode the length of the previous entry and write it to "p". This only
* uses the larger encoding (required in __ziplistCascadeUpdate). */
static void zipPrevEncodeLengthForceLarge(unsigned char *p, unsigned int len) {
if (p == NULL) return;
p[0] = ZIP_BIGLEN;
memcpy(p+1,&len,sizeof(len));
memrev32ifbe(p+1);
}

/* Decode the number of bytes required to store the length of the previous
* element, from the perspective of the entry pointed to by 'ptr'. */
#define ZIP_DECODE_PREVLENSIZE(ptr, prevlensize) do { \
if ((ptr)[0] < ZIP_BIGLEN) { \
(prevlensize) = 1; \
} else { \
(prevlensize) = 5; \
} \
} while(0);

/* Decode the length of the previous element, from the perspective of the entry
* pointed to by 'ptr'. */
#define ZIP_DECODE_PREVLEN(ptr, prevlensize, prevlen) do { \
ZIP_DECODE_PREVLENSIZE(ptr, prevlensize); \
if ((prevlensize) == 1) { \
(prevlen) = (ptr)[0]; \
} else if ((prevlensize) == 5) { \
assert(sizeof((prevlensize)) == 4); \
memcpy(&(prevlen), ((char*)(ptr)) + 1, 4); \
memrev32ifbe(&prevlen); \
} \
} while(0);

/* Return the difference in number of bytes needed to store the length of the
* previous element 'len', in the entry pointed to by 'p'. */
static int zipPrevLenByteDiff(unsigned char *p, unsigned int len) {
unsigned int prevlensize;
ZIP_DECODE_PREVLENSIZE(p, prevlensize);
return zipPrevEncodeLength(NULL, len) - prevlensize;
}

/* Return the total number of bytes used by the entry pointed to by 'p'. */
static unsigned int zipRawEntryLength(unsigned char *p) {
unsigned int prevlensize, encoding, lensize, len;
ZIP_DECODE_PREVLENSIZE(p, prevlensize);
ZIP_DECODE_LENGTH(p + prevlensize, encoding, lensize, len);
return prevlensize + lensize + len;
}

/* Check if string pointed to by 'entry' can be encoded as an integer.
* Stores the integer value in 'v' and its encoding in 'encoding'. */
static int zipTryEncoding(unsigned char *entry, unsigned int entrylen, long long *v, unsigned char *encoding) {
long long value;

if (entrylen >= 32 || entrylen == 0) return 0;
if (string2ll((char*)entry,entrylen,&value)) {
/* Great, the string can be encoded. Check what's the smallest
* of our encoding types that can hold this value. */
if (value >= 0 && value <= 12) {
*encoding = ZIP_INT_IMM_MIN+value;
} else if (value >= INT8_MIN && value <= INT8_MAX) {
*encoding = ZIP_INT_8B;
} else if (value >= INT16_MIN && value <= INT16_MAX) {
*encoding = ZIP_INT_16B;
} else if (value >= INT24_MIN && value <= INT24_MAX) {
*encoding = ZIP_INT_24B;
} else if (value >= INT32_MIN && value <= INT32_MAX) {
*encoding = ZIP_INT_32B;
} else {
*encoding = ZIP_INT_64B;
}
*v = value;
return 1;
}
return 0;
}

/* Store integer 'value' at 'p', encoded as 'encoding' */
static void zipSaveInteger(unsigned char *p, int64_t value, unsigned char encoding) {
int16_t i16;
int32_t i32;
int64_t i64;
if (encoding == ZIP_INT_8B) {
((int8_t*)p)[0] = (int8_t)value;
} else if (encoding == ZIP_INT_16B) {
i16 = value;
memcpy(p,&i16,sizeof(i16));
memrev16ifbe(p);
} else if (encoding == ZIP_INT_24B) {
i32 = value<<8;
memrev32ifbe(&i32);
memcpy(p,((uint8_t*)&i32)+1,sizeof(i32)-sizeof(uint8_t));
} else if (encoding == ZIP_INT_32B) {
i32 = value;
memcpy(p,&i32,sizeof(i32));
memrev32ifbe(p);
} else if (encoding == ZIP_INT_64B) {
i64 = value;
memcpy(p,&i64,sizeof(i64));
memrev64ifbe(p);
} else if (encoding >= ZIP_INT_IMM_MIN && encoding <= ZIP_INT_IMM_MAX) {
/* Nothing to do, the value is stored in the encoding itself. */
} else {
assert(NULL);
}
}

/* Read integer encoded as 'encoding' from 'p' */
static int64_t zipLoadInteger(unsigned char *p, unsigned char encoding) {
int16_t i16;
int32_t i32;
int64_t i64, ret = 0;
if (encoding == ZIP_INT_8B) {
ret = ((int8_t*)p)[0];
} else if (encoding == ZIP_INT_16B) {
memcpy(&i16,p,sizeof(i16));
memrev16ifbe(&i16);
ret = i16;
} else if (encoding == ZIP_INT_32B) {
memcpy(&i32,p,sizeof(i32));
memrev32ifbe(&i32);
ret = i32;
} else if (encoding == ZIP_INT_24B) {
i32 = 0;
memcpy(((uint8_t*)&i32)+1,p,sizeof(i32)-sizeof(uint8_t));
memrev32ifbe(&i32);
ret = i32>>8;
} else if (encoding == ZIP_INT_64B) {
memcpy(&i64,p,sizeof(i64));
memrev64ifbe(&i64);
ret = i64;
} else if (encoding >= ZIP_INT_IMM_MIN && encoding <= ZIP_INT_IMM_MAX) {
ret = (encoding & ZIP_INT_IMM_MASK)-1;
} else {
assert(NULL);
}
return ret;
}

/* Return a struct with all information about an entry. */
static zlentry zipEntry(unsigned char *p) {
zlentry e;

ZIP_DECODE_PREVLEN(p, e.prevrawlensize, e.prevrawlen);
ZIP_DECODE_LENGTH(p + e.prevrawlensize, e.encoding, e.lensize, e.len);
e.headersize = e.prevrawlensize + e.lensize;
e.p = p;
return e;
}

/* Create a new empty ziplist. */
unsigned char *ziplistNew(void) {
unsigned int bytes = ZIPLIST_HEADER_SIZE+1;
unsigned char *zl = zmalloc(bytes);
ZIPLIST_BYTES(zl) = intrev32ifbe(bytes);
ZIPLIST_TAIL_OFFSET(zl) = intrev32ifbe(ZIPLIST_HEADER_SIZE);
ZIPLIST_LENGTH(zl) = 0;
zl[bytes-1] = ZIP_END;
return zl;
}

/* Resize the ziplist. */
static unsigned char *ziplistResize(unsigned char *zl, unsigned int len) {
zl = zrealloc(zl,len);
ZIPLIST_BYTES(zl) = intrev32ifbe(len);
zl[len-1] = ZIP_END;
return zl;
}

/* When an entry is inserted, we need to set the prevlen field of the next
* entry to equal the length of the inserted entry. It can occur that this
* length cannot be encoded in 1 byte and the next entry needs to be grow
* a bit larger to hold the 5-byte encoded prevlen. This can be done for free,
* because this only happens when an entry is already being inserted (which
* causes a realloc and memmove). However, encoding the prevlen may require
* that this entry is grown as well. This effect may cascade throughout
* the ziplist when there are consecutive entries with a size close to
* ZIP_BIGLEN, so we need to check that the prevlen can be encoded in every
* consecutive entry.
*
* Note that this effect can also happen in reverse, where the bytes required
* to encode the prevlen field can shrink. This effect is deliberately ignored,
* because it can cause a "flapping" effect where a chain prevlen fields is
* first grown and then shrunk again after consecutive inserts. Rather, the
* field is allowed to stay larger than necessary, because a large prevlen
* field implies the ziplist is holding large entries anyway.
*
* The pointer "p" points to the first entry that does NOT need to be
* updated, i.e. consecutive fields MAY need an update. */
static unsigned char *__ziplistCascadeUpdate(unsigned char *zl, unsigned char *p) {
size_t curlen = intrev32ifbe(ZIPLIST_BYTES(zl)), rawlen, rawlensize;
size_t offset, noffset, extra;
unsigned char *np;
zlentry cur, next;

while (p[0] != ZIP_END) {
cur = zipEntry(p);
rawlen = cur.headersize + cur.len;
rawlensize = zipPrevEncodeLength(NULL,rawlen);

/* Abort if there is no next entry. */
if (p[rawlen] == ZIP_END) break;
next = zipEntry(p+rawlen);

/* Abort when "prevlen" has not changed. */
if (next.prevrawlen == rawlen) break;

if (next.prevrawlensize < rawlensize) {
/* The "prevlen" field of "next" needs more bytes to hold
* the raw length of "cur". */
offset = p-zl;
extra = rawlensize-next.prevrawlensize;
zl = ziplistResize(zl,curlen+extra);
p = zl+offset;

/* Current pointer and offset for next element. */
np = p+rawlen;
noffset = np-zl;

/* Update tail offset when next element is not the tail element. */
if ((zl+intrev32ifbe(ZIPLIST_TAIL_OFFSET(zl))) != np) {
ZIPLIST_TAIL_OFFSET(zl) =
intrev32ifbe(intrev32ifbe(ZIPLIST_TAIL_OFFSET(zl))+extra);
}

/* Move the tail to the back. */
memmove(np+rawlensize,
np+next.prevrawlensize,
curlen-noffset-next.prevrawlensize-1);
zipPrevEncodeLength(np,rawlen);

/* Advance the cursor */
p += rawlen;
curlen += extra;
} else {
if (next.prevrawlensize > rawlensize) {
/* This would result in shrinking, which we want to avoid.
* So, set "rawlen" in the available bytes. */
zipPrevEncodeLengthForceLarge(p+rawlen,rawlen);
} else {
zipPrevEncodeLength(p+rawlen,rawlen);
}

/* Stop here, as the raw length of "next" has not changed. */
break;
}
}
return zl;
}

/* Delete "num" entries, starting at "p". Returns pointer to the ziplist. */
static unsigned char *__ziplistDelete(unsigned char *zl, unsigned char *p, unsigned int num) {
unsigned int i, totlen, deleted = 0;
size_t offset;
int nextdiff = 0;
zlentry first, tail;

first = zipEntry(p);
for (i = 0; p[0] != ZIP_END && i < num; i++) {
p += zipRawEntryLength(p);
deleted++;
}

totlen = p-first.p;
if (totlen > 0) {
if (p[0] != ZIP_END) {
/* Storing `prevrawlen` in this entry may increase or decrease the
* number of bytes required compare to the current `prevrawlen`.
* There always is room to store this, because it was previously
* stored by an entry that is now being deleted. */
nextdiff = zipPrevLenByteDiff(p,first.prevrawlen);
p -= nextdiff;
zipPrevEncodeLength(p,first.prevrawlen);

/* Update offset for tail */
ZIPLIST_TAIL_OFFSET(zl) =
intrev32ifbe(intrev32ifbe(ZIPLIST_TAIL_OFFSET(zl))-totlen);

/* When the tail contains more than one entry, we need to take
* "nextdiff" in account as well. Otherwise, a change in the
* size of prevlen doesn't have an effect on the *tail* offset. */
tail = zipEntry(p);
if (p[tail.headersize+tail.len] != ZIP_END) {
ZIPLIST_TAIL_OFFSET(zl) =
intrev32ifbe(intrev32ifbe(ZIPLIST_TAIL_OFFSET(zl))+nextdiff);
}

/* Move tail to the front of the ziplist */
memmove(first.p,p,
intrev32ifbe(ZIPLIST_BYTES(zl))-(p-zl)-1);
} else {
/* The entire tail was deleted. No need to move memory. */
ZIPLIST_TAIL_OFFSET(zl) =
intrev32ifbe((first.p-zl)-first.prevrawlen);
}

/* Resize and update length */
offset = first.p-zl;
zl = ziplistResize(zl, intrev32ifbe(ZIPLIST_BYTES(zl))-totlen+nextdiff);
ZIPLIST_INCR_LENGTH(zl,-deleted);
p = zl+offset;

/* When nextdiff != 0, the raw length of the next entry has changed, so
* we need to cascade the update throughout the ziplist */
if (nextdiff != 0)
zl = __ziplistCascadeUpdate(zl,p);
}
return zl;
}

/* Insert item at "p". */
static unsigned char *__ziplistInsert(unsigned char *zl, unsigned char *p, unsigned char *s, unsigned int slen) {
size_t curlen = intrev32ifbe(ZIPLIST_BYTES(zl)), reqlen;
unsigned int prevlensize, prevlen = 0;
size_t offset;
int nextdiff = 0;
unsigned char encoding = 0;
long long value = 123456789; /* initialized to avoid warning. Using a value
that is easy to see if for some reason
we use it uninitialized. */
zlentry tail;

/* Find out prevlen for the entry that is inserted. */
if (p[0] != ZIP_END) {
ZIP_DECODE_PREVLEN(p, prevlensize, prevlen);
} else {
unsigned char *ptail = ZIPLIST_ENTRY_TAIL(zl);
if (ptail[0] != ZIP_END) {
prevlen = zipRawEntryLength(ptail);
}
}

/* See if the entry can be encoded */
if (zipTryEncoding(s,slen,&value,&encoding)) {
/* 'encoding' is set to the appropriate integer encoding */
reqlen = zipIntSize(encoding);
} else {
/* 'encoding' is untouched, however zipEncodeLength will use the
* string length to figure out how to encode it. */
reqlen = slen;
}
/* We need space for both the length of the previous entry and
* the length of the payload. */
reqlen += zipPrevEncodeLength(NULL,prevlen);
reqlen += zipEncodeLength(NULL,encoding,slen);

/* When the insert position is not equal to the tail, we need to
* make sure that the next entry can hold this entry's length in
* its prevlen field. */
nextdiff = (p[0] != ZIP_END) ? zipPrevLenByteDiff(p,reqlen) : 0;

/* Store offset because a realloc may change the address of zl. */
offset = p-zl;
zl = ziplistResize(zl,curlen+reqlen+nextdiff);
p = zl+offset;

/* Apply memory move when necessary and update tail offset. */
if (p[0] != ZIP_END) {
/* Subtract one because of the ZIP_END bytes */
memmove(p+reqlen,p-nextdiff,curlen-offset-1+nextdiff);

/* Encode this entry's raw length in the next entry. */
zipPrevEncodeLength(p+reqlen,reqlen);

/* Update offset for tail */
ZIPLIST_TAIL_OFFSET(zl) =
intrev32ifbe(intrev32ifbe(ZIPLIST_TAIL_OFFSET(zl))+reqlen);

/* When the tail contains more than one entry, we need to take
* "nextdiff" in account as well. Otherwise, a change in the
* size of prevlen doesn't have an effect on the *tail* offset. */
tail = zipEntry(p+reqlen);
if (p[reqlen+tail.headersize+tail.len] != ZIP_END) {
ZIPLIST_TAIL_OFFSET(zl) =
intrev32ifbe(intrev32ifbe(ZIPLIST_TAIL_OFFSET(zl))+nextdiff);
}
} else {
/* This element will be the new tail. */
ZIPLIST_TAIL_OFFSET(zl) = intrev32ifbe(p-zl);
}

/* When nextdiff != 0, the raw length of the next entry has changed, so
* we need to cascade the update throughout the ziplist */
if (nextdiff != 0) {
offset = p-zl;
zl = __ziplistCascadeUpdate(zl,p+reqlen);
p = zl+offset;
}

/* Write the entry */
p += zipPrevEncodeLength(p,prevlen);
p += zipEncodeLength(p,encoding,slen);
if (ZIP_IS_STR(encoding)) {
memcpy(p,s,slen);
} else {
zipSaveInteger(p,value,encoding);
}
ZIPLIST_INCR_LENGTH(zl,1);
return zl;
}

unsigned char *ziplistPush(unsigned char *zl, unsigned char *s, unsigned int slen, int where) {
unsigned char *p;
p = (where == ZIPLIST_HEAD) ? ZIPLIST_ENTRY_HEAD(zl) : ZIPLIST_ENTRY_END(zl);
return __ziplistInsert(zl,p,s,slen);
}

/* Returns an offset to use for iterating with ziplistNext. When the given
* index is negative, the list is traversed back to front. When the list
* doesn't contain an element at the provided index, NULL is returned. */
unsigned char *ziplistIndex(unsigned char *zl, int index) {
unsigned char *p;
unsigned int prevlensize, prevlen = 0;
if (index < 0) {
index = (-index)-1;
p = ZIPLIST_ENTRY_TAIL(zl);
if (p[0] != ZIP_END) {
ZIP_DECODE_PREVLEN(p, prevlensize, prevlen);
while (prevlen > 0 && index--) {
p -= prevlen;
ZIP_DECODE_PREVLEN(p, prevlensize, prevlen);
}
}
} else {
p = ZIPLIST_ENTRY_HEAD(zl);
while (p[0] != ZIP_END && index--) {
p += zipRawEntryLength(p);
}
}
return (p[0] == ZIP_END || index > 0) ? NULL : p;
}

/* Return pointer to next entry in ziplist.
*
* zl is the pointer to the ziplist
* p is the pointer to the current element
*
* The element after 'p' is returned, otherwise NULL if we are at the end. */
unsigned char *ziplistNext(unsigned char *zl, unsigned char *p) {
((void) zl);

/* "p" could be equal to ZIP_END, caused by ziplistDelete,
* and we should return NULL. Otherwise, we should return NULL
* when the *next* element is ZIP_END (there is no next entry). */
if (p[0] == ZIP_END) {
return NULL;
}

p += zipRawEntryLength(p);
if (p[0] == ZIP_END) {
return NULL;
}

return p;
}

/* Return pointer to previous entry in ziplist. */
unsigned char *ziplistPrev(unsigned char *zl, unsigned char *p) {
unsigned int prevlensize, prevlen = 0;

/* Iterating backwards from ZIP_END should return the tail. When "p" is
* equal to the first element of the list, we're already at the head,
* and should return NULL. */
if (p[0] == ZIP_END) {
p = ZIPLIST_ENTRY_TAIL(zl);
return (p[0] == ZIP_END) ? NULL : p;
} else if (p == ZIPLIST_ENTRY_HEAD(zl)) {
return NULL;
} else {
ZIP_DECODE_PREVLEN(p, prevlensize, prevlen);
assert(prevlen > 0);
return p-prevlen;
}
}

/* Get entry pointed to by 'p' and store in either '*sstr' or 'sval' depending
* on the encoding of the entry. '*sstr' is always set to NULL to be able
* to find out whether the string pointer or the integer value was set.
* Return 0 if 'p' points to the end of the ziplist, 1 otherwise. */
unsigned int ziplistGet(unsigned char *p, unsigned char **sstr, unsigned int *slen, long long *sval) {
zlentry entry;
if (p == NULL || p[0] == ZIP_END) return 0;
if (sstr) *sstr = NULL;

entry = zipEntry(p);
if (ZIP_IS_STR(entry.encoding)) {
if (sstr) {
*slen = entry.len;
*sstr = p+entry.headersize;
}
} else {
if (sval) {
*sval = zipLoadInteger(p+entry.headersize,entry.encoding);
}
}
return 1;
}

/* Insert an entry at "p". */
unsigned char *ziplistInsert(unsigned char *zl, unsigned char *p, unsigned char *s, unsigned int slen) {
return __ziplistInsert(zl,p,s,slen);
}

/* Delete a single entry from the ziplist, pointed to by *p.
* Also update *p in place, to be able to iterate over the
* ziplist, while deleting entries. */
unsigned char *ziplistDelete(unsigned char *zl, unsigned char **p) {
size_t offset = *p-zl;
zl = __ziplistDelete(zl,*p,1);

/* Store pointer to current element in p, because ziplistDelete will
* do a realloc which might result in a different "zl"-pointer.
* When the delete direction is back to front, we might delete the last
* entry and end up with "p" pointing to ZIP_END, so check this. */
*p = zl+offset;
return zl;
}

/* Delete a range of entries from the ziplist. */
unsigned char *ziplistDeleteRange(unsigned char *zl, unsigned int index, unsigned int num) {
unsigned char *p = ziplistIndex(zl,index);
return (p == NULL) ? zl : __ziplistDelete(zl,p,num);
}

/* Compare entry pointer to by 'p' with 'sstr' of length 'slen'. */
/* Return 1 if equal. */
unsigned int ziplistCompare(unsigned char *p, unsigned char *sstr, unsigned int slen) {
zlentry entry;
unsigned char sencoding;
long long zval, sval;
if (p[0] == ZIP_END) return 0;

entry = zipEntry(p);
if (ZIP_IS_STR(entry.encoding)) {
/* Raw compare */
if (entry.len == slen) {
return memcmp(p+entry.headersize,sstr,slen) == 0;
} else {
return 0;
}
} else {
/* Try to compare encoded values. Don't compare encoding because
* different implementations may encoded integers differently. */
if (zipTryEncoding(sstr,slen,&sval,&sencoding)) {
zval = zipLoadInteger(p+entry.headersize,entry.encoding);
return zval == sval;
}
}
return 0;
}

/* Find pointer to the entry equal to the specified entry. Skip 'skip' entries
* between every comparison. Returns NULL when the field could not be found. */
unsigned char *ziplistFind(unsigned char *p, unsigned char *vstr, unsigned int vlen, unsigned int skip) {
int skipcnt = 0;
unsigned char vencoding = 0;
long long vll = 0;

while (p[0] != ZIP_END) {
unsigned int prevlensize, encoding, lensize, len;
unsigned char *q;

ZIP_DECODE_PREVLENSIZE(p, prevlensize);
ZIP_DECODE_LENGTH(p + prevlensize, encoding, lensize, len);
q = p + prevlensize + lensize;

if (skipcnt == 0) {
/* Compare current entry with specified entry */
if (ZIP_IS_STR(encoding)) {
if (len == vlen && memcmp(q, vstr, vlen) == 0) {
return p;
}
} else {
/* Find out if the searched field can be encoded. Note that
* we do it only the first time, once done vencoding is set
* to non-zero and vll is set to the integer value. */
if (vencoding == 0) {
if (!zipTryEncoding(vstr, vlen, &vll, &vencoding)) {
/* If the entry can't be encoded we set it to
* UCHAR_MAX so that we don't retry again the next
* time. */
vencoding = UCHAR_MAX;
}
/* Must be non-zero by now */
assert(vencoding);
}

/* Compare current entry with specified entry, do it only
* if vencoding != UCHAR_MAX because if there is no encoding
* possible for the field it can't be a valid integer. */
if (vencoding != UCHAR_MAX) {
long long ll = zipLoadInteger(q, encoding);
if (ll == vll) {
return p;
}
}
}

/* Reset skip count */
skipcnt = skip;
} else {
/* Skip entry */
skipcnt--;
}

/* Move to next entry */
p = q + len;
}

return NULL;
}

/* Return length of ziplist. */
unsigned int ziplistLen(unsigned char *zl) {
unsigned int len = 0;
if (intrev16ifbe(ZIPLIST_LENGTH(zl)) < UINT16_MAX) {
len = intrev16ifbe(ZIPLIST_LENGTH(zl));
} else {
unsigned char *p = zl+ZIPLIST_HEADER_SIZE;
while (*p != ZIP_END) {
p += zipRawEntryLength(p);
len++;
}

/* Re-store length if small enough */
if (len < UINT16_MAX) ZIPLIST_LENGTH(zl) = intrev16ifbe(len);
}
return len;
}

/* Return ziplist blob size in bytes. */
size_t ziplistBlobLen(unsigned char *zl) {
return intrev32ifbe(ZIPLIST_BYTES(zl));
}

void ziplistRepr(unsigned char *zl) {
unsigned char *p;
int index = 0;
zlentry entry;

printf(
"{total bytes %d} "
"{length %u}\n"
"{tail offset %u}\n",
intrev32ifbe(ZIPLIST_BYTES(zl)),
intrev16ifbe(ZIPLIST_LENGTH(zl)),
intrev32ifbe(ZIPLIST_TAIL_OFFSET(zl)));
p = ZIPLIST_ENTRY_HEAD(zl);
while(*p != ZIP_END) {
entry = zipEntry(p);
printf(
"{"
"addr 0x%08lx, "
"index %2d, "
"offset %5ld, "
"rl: %5u, "
"hs %2u, "
"pl: %5u, "
"pls: %2u, "
"payload %5u"
"} ",
(long unsigned)p,
index,
(unsigned long) (p-zl),
entry.headersize+entry.len,
entry.headersize,
entry.prevrawlen,
entry.prevrawlensize,
entry.len);
p += entry.headersize;
if (ZIP_IS_STR(entry.encoding)) {
if (entry.len > 40) {
if (fwrite(p,40,1,stdout) == 0) perror("fwrite");
printf("...");
} else {
if (entry.len &&
fwrite(p,entry.len,1,stdout) == 0) perror("fwrite");
}
} else {
printf("%lld", (long long) zipLoadInteger(p,entry.encoding));
}
printf("\n");
p += entry.len;
index++;
}
printf("{end}\n\n");
}

#ifdef ZIPLIST_TEST_MAIN
#include <sys/time.h>
#include "adlist.h"
#include "sds.h"

#define debug(f, ...) { if (DEBUG) printf(f, __VA_ARGS__); }

unsigned char *createList() {
unsigned char *zl = ziplistNew();
zl = ziplistPush(zl, (unsigned char*)"foo", 3, ZIPLIST_TAIL);
zl = ziplistPush(zl, (unsigned char*)"quux", 4, ZIPLIST_TAIL);
zl = ziplistPush(zl, (unsigned char*)"hello", 5, ZIPLIST_HEAD);
zl = ziplistPush(zl, (unsigned char*)"1024", 4, ZIPLIST_TAIL);
return zl;
}

unsigned char *createIntList() {
unsigned char *zl = ziplistNew();
char buf[32];

sprintf(buf, "100");
zl = ziplistPush(zl, (unsigned char*)buf, strlen(buf), ZIPLIST_TAIL);
sprintf(buf, "128000");
zl = ziplistPush(zl, (unsigned char*)buf, strlen(buf), ZIPLIST_TAIL);
sprintf(buf, "-100");
zl = ziplistPush(zl, (unsigned char*)buf, strlen(buf), ZIPLIST_HEAD);
sprintf(buf, "4294967296");
zl = ziplistPush(zl, (unsigned char*)buf, strlen(buf), ZIPLIST_HEAD);
sprintf(buf, "non integer");
zl = ziplistPush(zl, (unsigned char*)buf, strlen(buf), ZIPLIST_TAIL);
sprintf(buf, "much much longer non integer");
zl = ziplistPush(zl, (unsigned char*)buf, strlen(buf), ZIPLIST_TAIL);
return zl;
}

long long usec(void) {
struct timeval tv;
gettimeofday(&tv,NULL);
return (((long long)tv.tv_sec)*1000000)+tv.tv_usec;
}

void stress(int pos, int num, int maxsize, int dnum) {
int i,j,k;
unsigned char *zl;
char posstr[2][5] = { "HEAD", "TAIL" };
long long start;
for (i = 0; i < maxsize; i+=dnum) {
zl = ziplistNew();
for (j = 0; j < i; j++) {
zl = ziplistPush(zl,(unsigned char*)"quux",4,ZIPLIST_TAIL);
}

/* Do num times a push+pop from pos */
start = usec();
for (k = 0; k < num; k++) {
zl = ziplistPush(zl,(unsigned char*)"quux",4,pos);
zl = ziplistDeleteRange(zl,0,1);
}
printf("List size: %8d, bytes: %8d, %dx push+pop (%s): %6lld usec\n",
i,intrev32ifbe(ZIPLIST_BYTES(zl)),num,posstr[pos],usec()-start);
zfree(zl);
}
}

void pop(unsigned char *zl, int where) {
unsigned char *p, *vstr;
unsigned int vlen;
long long vlong;

p = ziplistIndex(zl,where == ZIPLIST_HEAD ? 0 : -1);
if (ziplistGet(p,&vstr,&vlen,&vlong)) {
if (where == ZIPLIST_HEAD)
printf("Pop head: ");
else
printf("Pop tail: ");

if (vstr)
if (vlen && fwrite(vstr,vlen,1,stdout) == 0) perror("fwrite");
else
printf("%lld", vlong);

printf("\n");
ziplistDeleteRange(zl,-1,1);
} else {
printf("ERROR: Could not pop\n");
exit(1);
}
}

int randstring(char *target, unsigned int min, unsigned int max) {
int p = 0;
int len = min+rand()%(max-min+1);
int minval, maxval;
switch(rand() % 3) {
case 0:
minval = 0;
maxval = 255;
break;
case 1:
minval = 48;
maxval = 122;
break;
case 2:
minval = 48;
maxval = 52;
break;
default:
assert(NULL);
}

while(p < len)
target[p++] = minval+rand()%(maxval-minval+1);
return len;
}

void verify(unsigned char *zl, zlentry *e) {
int i;
int len = ziplistLen(zl);
zlentry _e;

for (i = 0; i < len; i++) {
memset(&e[i], 0, sizeof(zlentry));
e[i] = zipEntry(ziplistIndex(zl, i));

memset(&_e, 0, sizeof(zlentry));
_e = zipEntry(ziplistIndex(zl, -len+i));

assert(memcmp(&e[i], &_e, sizeof(zlentry)) == 0);
}
}

int main(int argc, char **argv) {
unsigned char *zl, *p;
unsigned char *entry;
unsigned int elen;
long long value;

/* If an argument is given, use it as the random seed. */
if (argc == 2)
srand(atoi(argv[1]));

zl = createIntList();
ziplistRepr(zl);

zl = createList();
ziplistRepr(zl);

pop(zl,ZIPLIST_TAIL);
ziplistRepr(zl);

pop(zl,ZIPLIST_HEAD);
ziplistRepr(zl);

pop(zl,ZIPLIST_TAIL);
ziplistRepr(zl);

pop(zl,ZIPLIST_TAIL);
ziplistRepr(zl);

printf("Get element at index 3:\n");
{
zl = createList();
p = ziplistIndex(zl, 3);
if (!ziplistGet(p, &entry, &elen, &value)) {
printf("ERROR: Could not access index 3\n");
return 1;
}
if (entry) {
if (elen && fwrite(entry,elen,1,stdout) == 0) perror("fwrite");
printf("\n");
} else {
printf("%lld\n", value);
}
printf("\n");
}

printf("Get element at index 4 (out of range):\n");
{
zl = createList();
p = ziplistIndex(zl, 4);
if (p == NULL) {
printf("No entry\n");
} else {
printf("ERROR: Out of range index should return NULL, returned offset: %ld\n", p-zl);
return 1;
}
printf("\n");
}

printf("Get element at index -1 (last element):\n");
{
zl = createList();
p = ziplistIndex(zl, -1);
if (!ziplistGet(p, &entry, &elen, &value)) {
printf("ERROR: Could not access index -1\n");
return 1;
}
if (entry) {
if (elen && fwrite(entry,elen,1,stdout) == 0) perror("fwrite");
printf("\n");
} else {
printf("%lld\n", value);
}
printf("\n");
}

printf("Get element at index -4 (first element):\n");
{
zl = createList();
p = ziplistIndex(zl, -4);
if (!ziplistGet(p, &entry, &elen, &value)) {
printf("ERROR: Could not access index -4\n");
return 1;
}
if (entry) {
if (elen && fwrite(entry,elen,1,stdout) == 0) perror("fwrite");
printf("\n");
} else {
printf("%lld\n", value);
}
printf("\n");
}

printf("Get element at index -5 (reverse out of range):\n");
{
zl = createList();
p = ziplistIndex(zl, -5);
if (p == NULL) {
printf("No entry\n");
} else {
printf("ERROR: Out of range index should return NULL, returned offset: %ld\n", p-zl);
return 1;
}
printf("\n");
}

printf("Iterate list from 0 to end:\n");
{
zl = createList();
p = ziplistIndex(zl, 0);
while (ziplistGet(p, &entry, &elen, &value)) {
printf("Entry: ");
if (entry) {
if (elen && fwrite(entry,elen,1,stdout) == 0) perror("fwrite");
} else {
printf("%lld", value);
}
p = ziplistNext(zl,p);
printf("\n");
}
printf("\n");
}

printf("Iterate list from 1 to end:\n");
{
zl = createList();
p = ziplistIndex(zl, 1);
while (ziplistGet(p, &entry, &elen, &value)) {
printf("Entry: ");
if (entry) {
if (elen && fwrite(entry,elen,1,stdout) == 0) perror("fwrite");
} else {
printf("%lld", value);
}
p = ziplistNext(zl,p);
printf("\n");
}
printf("\n");
}

printf("Iterate list from 2 to end:\n");
{
zl = createList();
p = ziplistIndex(zl, 2);
while (ziplistGet(p, &entry, &elen, &value)) {
printf("Entry: ");
if (entry) {
if (elen && fwrite(entry,elen,1,stdout) == 0) perror("fwrite");
} else {
printf("%lld", value);
}
p = ziplistNext(zl,p);
printf("\n");
}
printf("\n");
}

printf("Iterate starting out of range:\n");
{
zl = createList();
p = ziplistIndex(zl, 4);
if (!ziplistGet(p, &entry, &elen, &value)) {
printf("No entry\n");
} else {
printf("ERROR\n");
}
printf("\n");
}

printf("Iterate from back to front:\n");
{
zl = createList();
p = ziplistIndex(zl, -1);
while (ziplistGet(p, &entry, &elen, &value)) {
printf("Entry: ");
if (entry) {
if (elen && fwrite(entry,elen,1,stdout) == 0) perror("fwrite");
} else {
printf("%lld", value);
}
p = ziplistPrev(zl,p);
printf("\n");
}
printf("\n");
}

printf("Iterate from back to front, deleting all items:\n");
{
zl = createList();
p = ziplistIndex(zl, -1);
while (ziplistGet(p, &entry, &elen, &value)) {
printf("Entry: ");
if (entry) {
if (elen && fwrite(entry,elen,1,stdout) == 0) perror("fwrite");
} else {
printf("%lld", value);
}
zl = ziplistDelete(zl,&p);
p = ziplistPrev(zl,p);
printf("\n");
}
printf("\n");
}

printf("Delete inclusive range 0,0:\n");
{
zl = createList();
zl = ziplistDeleteRange(zl, 0, 1);
ziplistRepr(zl);
}

printf("Delete inclusive range 0,1:\n");
{
zl = createList();
zl = ziplistDeleteRange(zl, 0, 2);
ziplistRepr(zl);
}

printf("Delete inclusive range 1,2:\n");
{
zl = createList();
zl = ziplistDeleteRange(zl, 1, 2);
ziplistRepr(zl);
}

printf("Delete with start index out of range:\n");
{
zl = createList();
zl = ziplistDeleteRange(zl, 5, 1);
ziplistRepr(zl);
}

printf("Delete with num overflow:\n");
{
zl = createList();
zl = ziplistDeleteRange(zl, 1, 5);
ziplistRepr(zl);
}

printf("Delete foo while iterating:\n");
{
zl = createList();
p = ziplistIndex(zl,0);
while (ziplistGet(p,&entry,&elen,&value)) {
if (entry && strncmp("foo",(char*)entry,elen) == 0) {
printf("Delete foo\n");
zl = ziplistDelete(zl,&p);
} else {
printf("Entry: ");
if (entry) {
if (elen && fwrite(entry,elen,1,stdout) == 0)
perror("fwrite");
} else {
printf("%lld",value);
}
p = ziplistNext(zl,p);
printf("\n");
}
}
printf("\n");
ziplistRepr(zl);
}

printf("Regression test for >255 byte strings:\n");
{
char v1[257],v2[257];
memset(v1,'x',256);
memset(v2,'y',256);
zl = ziplistNew();
zl = ziplistPush(zl,(unsigned char*)v1,strlen(v1),ZIPLIST_TAIL);
zl = ziplistPush(zl,(unsigned char*)v2,strlen(v2),ZIPLIST_TAIL);

/* Pop values again and compare their value. */
p = ziplistIndex(zl,0);
assert(ziplistGet(p,&entry,&elen,&value));
assert(strncmp(v1,(char*)entry,elen) == 0);
p = ziplistIndex(zl,1);
assert(ziplistGet(p,&entry,&elen,&value));
assert(strncmp(v2,(char*)entry,elen) == 0);
printf("SUCCESS\n\n");
}

printf("Regression test deleting next to last entries:\n");
{
char v[3][257];
zlentry e[3];
int i;

for (i = 0; i < (sizeof(v)/sizeof(v[0])); i++) {
memset(v[i], 'a' + i, sizeof(v[0]));
}

v[0][256] = '\0';
v[1][ 1] = '\0';
v[2][256] = '\0';

zl = ziplistNew();
for (i = 0; i < (sizeof(v)/sizeof(v[0])); i++) {
zl = ziplistPush(zl, (unsigned char *) v[i], strlen(v[i]), ZIPLIST_TAIL);
}

verify(zl, e);

assert(e[0].prevrawlensize == 1);
assert(e[1].prevrawlensize == 5);
assert(e[2].prevrawlensize == 1);

/* Deleting entry 1 will increase `prevrawlensize` for entry 2 */
unsigned char *p = e[1].p;
zl = ziplistDelete(zl, &p);

verify(zl, e);

assert(e[0].prevrawlensize == 1);
assert(e[1].prevrawlensize == 5);

printf("SUCCESS\n\n");
}

printf("Create long list and check indices:\n");
{
zl = ziplistNew();
char buf[32];
int i,len;
for (i = 0; i < 1000; i++) {
len = sprintf(buf,"%d",i);
zl = ziplistPush(zl,(unsigned char*)buf,len,ZIPLIST_TAIL);
}
for (i = 0; i < 1000; i++) {
p = ziplistIndex(zl,i);
assert(ziplistGet(p,NULL,NULL,&value));
assert(i == value);

p = ziplistIndex(zl,-i-1);
assert(ziplistGet(p,NULL,NULL,&value));
assert(999-i == value);
}
printf("SUCCESS\n\n");
}

printf("Compare strings with ziplist entries:\n");
{
zl = createList();
p = ziplistIndex(zl,0);
if (!ziplistCompare(p,(unsigned char*)"hello",5)) {
printf("ERROR: not \"hello\"\n");
return 1;
}
if (ziplistCompare(p,(unsigned char*)"hella",5)) {
printf("ERROR: \"hella\"\n");
return 1;
}

p = ziplistIndex(zl,3);
if (!ziplistCompare(p,(unsigned char*)"1024",4)) {
printf("ERROR: not \"1024\"\n");
return 1;
}
if (ziplistCompare(p,(unsigned char*)"1025",4)) {
printf("ERROR: \"1025\"\n");
return 1;
}
printf("SUCCESS\n\n");
}

printf("Stress with random payloads of different encoding:\n");
{
int i,j,len,where;
unsigned char *p;
char buf[1024];
int buflen;
list *ref;
listNode *refnode;

/* Hold temp vars from ziplist */
unsigned char *sstr;
unsigned int slen;
long long sval;

for (i = 0; i < 20000; i++) {
zl = ziplistNew();
ref = listCreate();
listSetFreeMethod(ref,sdsfree);
len = rand() % 256;

/* Create lists */
for (j = 0; j < len; j++) {
where = (rand() & 1) ? ZIPLIST_HEAD : ZIPLIST_TAIL;
if (rand() % 2) {
buflen = randstring(buf,1,sizeof(buf)-1);
} else {
switch(rand() % 3) {
case 0:
buflen = sprintf(buf,"%lld",(0LL + rand()) >> 20);
break;
case 1:
buflen = sprintf(buf,"%lld",(0LL + rand()));
break;
case 2:
buflen = sprintf(buf,"%lld",(0LL + rand()) << 20);
break;
default:
assert(NULL);
}
}

/* Add to ziplist */
zl = ziplistPush(zl, (unsigned char*)buf, buflen, where);

/* Add to reference list */
if (where == ZIPLIST_HEAD) {
listAddNodeHead(ref,sdsnewlen(buf, buflen));
} else if (where == ZIPLIST_TAIL) {
listAddNodeTail(ref,sdsnewlen(buf, buflen));
} else {
assert(NULL);
}
}

assert(listLength(ref) == ziplistLen(zl));
for (j = 0; j < len; j++) {
/* Naive way to get elements, but similar to the stresser
* executed from the Tcl test suite. */
p = ziplistIndex(zl,j);
refnode = listIndex(ref,j);

assert(ziplistGet(p,&sstr,&slen,&sval));
if (sstr == NULL) {
buflen = sprintf(buf,"%lld",sval);
} else {
buflen = slen;
memcpy(buf,sstr,buflen);
buf[buflen] = '\0';
}
assert(memcmp(buf,listNodeValue(refnode),buflen) == 0);
}
zfree(zl);
listRelease(ref);
}
printf("SUCCESS\n\n");
}

printf("Stress with variable ziplist size:\n");
{
stress(ZIPLIST_HEAD,100000,16384,256);
stress(ZIPLIST_TAIL,100000,16384,256);
}

return 0;
}

#endif
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: