您的位置:首页 > 移动开发 > IOS开发

Netty4.x 源码实战系列(三):NioServerSocketChannel全剖析

2017-12-31 22:30 495 查看
根据上一篇《Netty4.x 源码实战系列(二):服务端bind流程详解》所述,在进行服务端开发时,必须通过ServerBootstrap引导类的channel方法来指定channel类型, channel方法的调用其实就是实例化了一个用于生成此channel类型对象的工厂对象。 并且在bind调用后,会调用此工厂对象来生成一个新channel。

本篇将通过NioServerSocketChannel实例化过程,来深入剖析NioServerSocketChannel。

在开始代码分析之前,我们先看一下NioServerSocketChannel的类继承结构图:



调用工厂完成NioServerSocketChannel实例的创建

在绑定侦听端口过程中,我们调用了AbstractBootstrap的initAndRegister方法来完成channel的创建与初始化,channel实例化代码如下:

channelFactory.newChannel()


而channelFactory对象是我们通过ServerBootstrap.channel方法的调用生成的

public B channel(Class<? extends C> channelClass) {
if (channelClass == null) {
throw new NullPointerException("channelClass");
}
return channelFactory(new ReflectiveChannelFactory<C>(channelClass));
}


通过代码可知,此工厂对象是ReflectiveChannelFactory实例

public class ReflectiveChannelFactory<T extends Channel> implements ChannelFactory<T> {

private final Class<? extends T> clazz;

public ReflectiveChannelFactory(Class<? extends T> clazz) {
if (clazz == null) {
throw new NullPointerException("clazz");
}
this.clazz = clazz;
}

@Override
public T newChannel() {
try {
return clazz.getConstructor().newInstance();
} catch (Throwable t) {
throw new ChannelException("Unable to create Channel from class " + clazz, t);
}
}
}


所以 channelFactory.newChannel() 实例化其实就是NioServerSocketChannel无参构造方法反射而成。

NioServerSocketChannel实例化过程分析

我们先看一下NioServerSocketChannel的无参构造代码

public NioServerSocketChannel() {
this(newSocket(DEFAULT_SELECTOR_PROVIDER));
}


无参构造方法中有两个关键点:

1、使用默认的多路复用器辅助类 DEFAULT_SELECTOR_PROVIDER

private static final SelectorProvider DEFAULT_SELECTOR_PROVIDER = SelectorProvider.provider();


2、通过newSocket创建ServerSocketChannel

private static ServerSocketChannel newSocket(SelectorProvider provider) {
try {

return provider.openServerSocketChannel();
} catch (IOException e) {
throw new ChannelException(
"Failed to open a server socket.", e);
}
}


我们将newSocket生成的ServerSocketChannel对象继续传递给本类中的NioServerSocketChannel(ServerSocketChannel channel)构造方法

public NioServerSocketChannel(ServerSocketChannel channel) {
super(null, channel, SelectionKey.OP_ACCEPT);
config = new NioServerSocketChannelConfig(this, javaChannel().socket());
}


在其内部,我们会调用父类AbstractNioMessageChannel的构造方法:

protected AbstractNioMessageChannel(Channel parent, SelectableChannel ch, int readInterestOp) {
super(parent, ch, readInterestOp);
}


因为是服务端新生成的channel,第一个参数指定为null,表示没有父channel,第二个参数指定为ServerSocketChannel,第三个参数指定ServerSocketChannel关心的事件类型为SelectionKey.OP_ACCEPT。

在AbstractNioMessageChannel内部会继续调用父类AbstractNioChannel的构造方法:

protected AbstractNioChannel(Channel parent, SelectableChannel ch, int readInterestOp) {
// 继续调用父类构造方法
super(parent);
// 将ServerSocketChannel对象保存
this.ch = ch;
// 设置关心的事件
this.readInterestOp = readInterestOp;
try {
// 设置当前通道为非阻塞的
ch.configureBlocking(false);
} catch (IOException e) {
try {
ch.close();
} catch (IOException e2) {
if (logger.isWarnEnabled()) {
logger.warn(
"Failed to close a partially initialized socket.", e2);
}
}

throw new ChannelException("Failed to enter non-blocking mode.", e);
}
}


在AbstractNioChannel中做了下面几件事:

1、继续调用父类AbstractChannel(Channel parent)构造方法;

2、通过this.ch = ch 保存ServerSocketChannel, 因为NioServerSocketChannel是Netty封装的对象,而ServerSocketChannel是有前面默认selector_provider生成的,是java nio的, 其实“this.ch = ch”可以被认为是绑定java nio服务端通道至netty对象中;

3、设置ServerSocketChannel关心的事件类型;

4、设置ServerSocketChannel为非阻塞的(熟悉Java NIO的都知道如果不设置为false,启动多路复用器会报异常)

我们再看一下AbstractChannel(Channel parent)的内部代码细节

protected AbstractChannel(Channel parent) {
this.parent = parent;
id = newId();
unsafe = newUnsafe();
pipeline = newChannelPipeline();
}


此构造方法中,主要做了三件事:

1、给channel生成一个新的id

2、通过newUnsafe初始化channel的unsafe属性

3、newChannelPipeline初始化channel的pipeline属性

id的生成我们就不细究了,我们主要看看newUnsafe 及 newChannelPipeline是如何创建unsafe对象及pipeline对象的。

newUnsafe()方法调用

在AbstractChannel类中,newUnsafe()是一个抽象方法

protected abstract AbstractUnsafe newUnsafe();


通过上面的类继承结构图,我们找到AbstractNioMessageChannel类中有newUnsafe()的实现

@Override
protected AbstractNioUnsafe newUnsafe() {
return new NioMessageUnsafe();
}


此方法返回一个NioMessageUnsafe实例对象,而NioMessageUnsafe是AbstractNioMessageChannel的内部类

private final class NioMessageUnsafe extends AbstractNioUnsafe {

private final List<Object> readBuf = new ArrayList<Object>();

@Override
public void read() {
assert eventLoop().inEventLoop();
final ChannelConfig config = config();
final ChannelPipeline pipeline = pipeline();
final RecvByteBufAllocator.Handle allocHandle = unsafe().recvBufAllocHandle();
allocHandle.reset(config);

boolean closed = false;
Throwable exception = null;
try {
try {
do {
int localRead = doReadMessages(readBuf);
if (localRead == 0) {
break;
}
if (localRead < 0) {
closed = true;
break;
}

allocHandle.incMessagesRead(localRead);
} while (allocHandle.continueReading());
} catch (Throwable t) {
exception = t;
}

int size = readBuf.size();
for (int i = 0; i < size; i ++) {
readPending = false;
pipeline.fireChannelRead(readBuf.get(i));
}
readBuf.clear();
allocHandle.readComplete();
pipeline.fireChannelReadComplete();

if (exception != null) {
closed = closeOnReadError(exception);

pipeline.fireExceptionCaught(exception);
}

if (closed) {
inputShutdown = true;
if (isOpen()) {
close(voidPromise());
}
}
} finally {
if (!readPending && !config.isAutoRead()) {
removeReadOp();
}
}
}
}


NioMessageUnsafe 只覆盖了 父类AbstractNioUnsafe中的read方法,通过NioMessageUnsafe 及其父类的代码便可以知道, 其实unsafe对象是真正的负责底层channel的连接/读/写等操作的,unsafe就好比一个底层channel操作的代理对象。

newChannelPipeline()方法调用

newChannelPipeline直接在AbstractChannel内实现

protected DefaultChannelPipeline newChannelPipeline() {
return new DefaultChannelPipeline(this);
}


该方法返回了创建了一个DefaultChannelPipeline对象

protected DefaultChannelPipeline(Channel channel) {
this.channel = ObjectUtil.checkNotNull(channel, "channel");
succeededFuture = new SucceededChannelFuture(channel, null);
voidPromise =  new VoidChannelP
a330
romise(channel, true);

tail = new TailContext(this);
head = new HeadContext(this);

head.next = tail;
tail.prev = head;
}


此DefaultChannelPipeline对象会绑定NioServerSocketChannel对象,并初始化了HeadContext及TailContext对象。

tail = new TailContext(this);
head = new HeadContext(this);


head及tail初始化完成后,它们会相互连接。

通过上面的代码可以得出,pipeline就是一个双向链表。关于Pipeline的更多细节,此处不做赘述,欢迎大家关注下一篇文章。

我们在回到NioServerSocketChannel的构造方法 NioServerSocketChannel(ServerSocketChannel channel)

public NioServerSocketChannel(ServerSocketChannel channel) {
super(null, channel, SelectionKey.OP_ACCEPT);
config = new NioServerSocketChannelConfig(this, javaChannel().socket());
}


父类构造方法调用完成后,NioServerSocketChannel还要初始化一下自己的配置对象

config = new NioServerSocketChannelConfig(this, javaChannel().socket());


NioServerSocketChannelConfig是NioServerSocketChannel的内部类

private final class NioServerSocketChannelConfig extends DefaultServerSocketChannelConfig {
private NioServerSocketChannelConfig(NioServerSocketChannel channel, ServerSocket javaSocket) {
super(channel, javaSocket);
}

@Override
protected void autoReadCleared() {
clearReadPending();
}
}


而NioServerSocketChannelConfig 又是继承自DefaultServerSocketChannelConfig,通过代码分析,此config对象就是就会对底层ServerSocket一些配置设置行为的封装。

至此NioServerSocketChannel对象应该创建完成了~

总结:

1、NioServerSocketChannel对象内部绑定了Java NIO创建的ServerSocketChannel对象;

2、Netty中,每个channel都有一个unsafe对象,此对象封装了Java NIO底层channel的操作细节;

3、Netty中,每个channel都有一个pipeline对象,此对象就是一个双向链表;
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息