您的位置:首页 > 编程语言 > C语言/C++

将C++源码封装为dll,并提供接口给调用

2017-12-30 12:00 435 查看
一、前言

       本文主要记录将某个cpp函数在vs上封装为dll ,并在另一cpp中调用该dll 接口。

二、欲封装的源码

//MOG_BGS3.h
#include "opencv2/core/core.hpp"
#include <list>
#include"cv.h"
#include <iostream>
using namespace cv;

namespace OurMogBgs{

class CV_EXPORTS_W BackgroundSubtractor : public Algorithm
{
public:

virtual ~BackgroundSubtractor();
CV_WRAP_AS(apply) virtual void operator()(InputArray image, OutputArray fgmask,
double learningRate = 0);
virtual void getBackgroundImage(OutputArray backgroundImage) const;
};
class CV_EXPORTS_W BackgroundSubtractorMOG3 : public BackgroundSubtractor
{
public:
CV_WRAP BackgroundSubtractorMOG3();
CV_WRAP BackgroundSubtractorMOG3(int history, float varThreshold, bool bShadowDetection = true);
virtual ~BackgroundSubtractorMOG3();
virtual void operator()(InputArray image, OutputArray fgmask, double learningRate = -1);
virtual void getBackgroundImage(OutputArray backgroundImage) const;
virtual void initialize(Size frameSize, int frameType);

protected:
Size frameSize;
int frameType;
Mat bgmodel;
Mat bgmodelUsedModes;
int nframes;
int history;
int nmixtures;
double varThreshold;
float backgroundRatio;
float varThresholdGen;
float fVarInit;
float fVarMin;
float fVarMax;
float fCT;
bool bShadowDetection;
unsigned char nShadowDetection;
float fTau;

};

}
相应的cpp 文件
//MOG_BGS3.cpp

#include "MOG_BGS3.h"
#include <list>

using namespace cv;

namespace OurMogBgs{
/*
Interface of Gaussian mixture algorithm from:

"Improved adaptive Gausian mixture model for background subtraction"
Z.Zivkovic
International Conference Pattern Recognition, UK, August, 2004 http://www.zoranz.net/Publications/zivkovic2004ICPR.pdf 
Advantages:
-fast - number of Gausssian components is constantly adapted per pixel.
-performs also shadow detection (see bgfg_segm_test.cpp example)

*/
BackgroundSubtractor::~BackgroundSubtractor() {}
void BackgroundSubtractor::operator()(InputArray _image, OutputArray _fgmask, double learningRate)
{
}
void BackgroundSubtractor::getBackgroundImage(OutputArray backgroundImage) const
{
}

// default parameters of gaussian background detection algorithm
static const int defaultHistory3 = 500; // Learning rate; alpha = 1/defaultHistory2
static const float defaultVarThreshold3 = 4.0f*4.0f;  //表示马氏平方距离上使用的来判断是否为背景的阈值
static const int defaultNMixtures3 = 3; // maximal number of Gaussians in mixture
static const float defaultBackgroundRatio3 = 0.9f; // threshold sum of weights for background test
static const float defaultVarThresholdGen3 = 2.5f*2.5f;  //判断是否匹配的那个函数
static const float defaultVarInit3 = 30.0f; // initial variance for new components  初始化的方差
static const float defaultVarMax3 = 5 * defaultVarInit3;
static const float defaultVarMin3 = 4.0f;

// additional parameters
static const float defaultfCT3 = 0.05f; // complexity reduction prior constant 0 - no reduction of number of components
static const unsigned char defaultnShadowDetection3 = (unsigned char)127; // value to use in the segmentation mask for shadows, set 0 not to do shadow detection
static const float defaultfTau = 0.5f; // Tau - shadow threshold, see the paper for explanation

struct GaussBGStatModel3Params
{
//image info
int nWidth;
int nHeight;
int nND;//number of data dimensions (image channels)

bool bPostFiltering;//defult 1 - do postfiltering - will make shadow detection results also give value 255
double  minArea; // for postfiltering

bool bInit;//default 1, faster updates at start

/////////////////////////
//very important parameters - things you will change
////////////////////////
float fAlphaT;
//alpha - speed of update - if the time interval you want to average over is T
//set alpha=1/T. It is also usefull at start to make T slowly increase
//from 1 until the desired T
float fTb;
//Tb - threshold on the squared Mahalan. dist. to decide if it is well described
//by the background model or not. Related to Cthr from the paper.
//This does not influence the update of the background. A typical value could be 4 sigma
//and that is Tb=4*4=16;

/////////////////////////
//less important parameters - things you might change but be carefull
////////////////////////
float fTg;
//Tg - threshold on the squared Mahalan. dist. to decide
//when a sample is close to the existing components. If it is not close
//to any a new component will be generated. I use 3 sigma => Tg=3*3=9.
//Smaller Tg leads to more generated components and higher Tg might make
//lead to small number of components but they can grow too large
float fTB;//1-cf from the paper
//TB - threshold when the component becomes significant enough to be included into
//the background model. It is the TB=1-cf from the paper. So I use cf=0.1 => TB=0.
//For alpha=0.001 it means that the mode should exist for approximately 105 frames before
//it is considered foreground
float fVarInit;
float fVarMax;
float fVarMin;
//initial standard deviation  for the newly generated components.
//It will will influence the speed of adaptation. A good guess should be made.
//A simple way is to estimate the typical standard deviation from the images.
//I used here 10 as a reasonable value
float fCT;//CT - complexity reduction prior
//this is related to the number of samples needed to accept that a component
//actually exists. We use CT=0.05 of all the samples. By setting CT=0 you get
//the standard Stauffer&Grimson algorithm (maybe not exact but very similar)

//even less important parameters
int nM;//max number of modes - const - 4 is usually enough

//shadow detection parameters
bool bShadowDetection;//default 1 - do shadow detection
unsigned char nShadowDetection;//do shadow detection - insert this value as the detection result
float fTau;
// Tau - shadow threshold. The shadow is detected if the pixel is darker
//version of the background. Tau is a threshold on how much darker the shadow can be.
//Tau= 0.5 means that if pixel is more than 2 times darker then it is not shadow
//See: Prati,Mikic,Trivedi,Cucchiarra,"Detecting Moving Shadows...",IEEE PAMI,2003.
};

struct GMM
{
float weight;
float variance;
};

// shadow detection performed per pixel
// should work for rgb data, could be usefull for gray scale and depth data as well
// See: Prati,Mikic,Trivedi,Cucchiarra,"Detecting Moving Shadows...",IEEE PAMI,2003.
static CV_INLINE bool
detectShadowGMM(const float* data, int nchannels, int nmodes,
const GMM* gmm, const float* mean,
float Tb, float TB, float tau)
{
float tWeight = 0;

// check all the components  marked as background:
for (int mode = 0; mode < nmodes; mode++, mean += nchannels)
{
GMM g = gmm[mode];

float numerator = 0.0f;
float denominator = 0.0f;
for (int c = 0; c < nchannels; c++)
{
numerator += data[c] * mean[c];
denominator += mean[c] * mean[c];
}

// no division by zero allowed
if (denominator == 0)
return false;

// if tau < a < 1 then also check the color distortion
if (numerator <= denominator && numerator >= tau*denominator)
{
float a = numerator / denominator;
float dist2a = 0.0f;

for (int c = 0; c < nchannels; c++)
{
float dD = a*mean[c] - data[c];
dist2a += dD*dD;
}

if (dist2a < Tb*g.variance*a*a)
return true;
};

tWeight += g.weight;
if (tWeight > TB)
return false;
};
return false;
}

//update GMM - the base update function performed per pixel
//
//"Efficient Adaptive Density Estimapion per Image Pixel for the Task of Background Subtraction"
//Z.Zivkovic, F. van der Heijden
//Pattern Recognition Letters, vol. 27, no. 7, pages 773-780, 2006.
//
//The algorithm similar to the standard Stauffer&Grimson algorithm with
//additional selection of the number of the Gaussian components based on:
//
//"Recursive unsupervised learning of finite mixture models "
//Z.Zivkovic, F.van der Heijden
//IEEE Trans. on Pattern Analysis and Machine Intelligence, vol.26, no.5, pages 651-656, 2004
//http://www.zoranz.net/Publications/zivkovic2004PAMI.pdf

struct MOG3Invoker : ParallelLoopBody
{
MOG3Invoker(const Mat& _src, Mat& _dst,
GMM* _gmm, float* _mean,
uchar* _modesUsed,
int _nmixtures, float _alphaT,
float _Tb, float _TB, float _Tg,
float _varInit, float _varMin, float _varMax,
float _prune, float _tau, bool _detectShadows,
uchar _shadowVal)
{
src = &_src;
dst = &_dst;
gmm0 = _gmm;
mean0 = _mean;
modesUsed0 = _modesUsed;
nmixtures = _nmixtures;
alphaT = _alphaT;
Tb = _Tb;
TB = _TB;
Tg = _Tg;
varInit = _varInit;
varMin = MIN(_varMin, _varMax);
varMax = MAX(_varMin, _varMax);
prune = _prune;
tau = _tau;
detectShadows = _detectShadows;
shadowVal = _shadowVal;

cvtfunc = src->depth() != CV_32F ? getConvertFunc(src->depth(), CV_32F) : 0;
}

void operator()(const Range& range) const
{
int y0 = range.start, y1 = range.end;
int ncols = src->cols, nchannels = src->channels();
AutoBuffer<float> buf(src->cols*nchannels);
float alpha1 = 1.f - alphaT;
float dData[CV_CN_MAX];

for (int y = y0; y < y1; y++)
{
const float* data = buf;
if (cvtfunc)
cvtfunc(src->ptr(y), src->step, 0, 0, (uchar*)data, 0, Size(ncols*nchannels, 1), 0);
else
data = src->ptr<float>(y);

float* mean = mean0 + ncols*nmixtures*nchannels*y;
GMM* gmm = gmm0 + ncols*nmixtures*y;
uchar* modesUsed = modesUsed0 + ncols*y;
uchar* mask = dst->ptr(y);

for (int x = 0; x < ncols; x++, data += nchannels, gmm += nmixtures, mean += nmixtures*nchannels)
{
//calculate distances to the modes (+ sort)
//here we need to go in descending order!!!
bool background = false;//return value -> true - the pixel classified as background

//internal:
bool fitsPDF = false;//if it remains zero a new GMM mode will be added
int nmodes = modesUsed[x], nNewModes = nmodes;//current number of modes in GMM

float totalWeight = 0.f;

float* mean_m = mean;

//////
//go through all modes
for (int mode = 0; mode < nmodes; mode++, mean_m += nchannels)
{
float weight = alpha1*gmm[mode].weight + prune;//need only weight if fit is found
int swap_count = 0;
////
//fit not found yet
if (!fitsPDF)
{
//check if it belongs to some of the remaining modes
float var = gmm[mode].variance;  //高斯混合模型的方差

//calculate difference and distance
float dist2;

if (nchannels == 3)
{
dData[0] = mean_m[0] - data[0];
dData[1] = mean_m[1] - data[1];
dData[2] = mean_m[2] - data[2];
dist2 = dData[0] * dData[0] + dData[1] * dData[1] + dData[2] * dData[2];
}
else
{
dist2 = 0.f;
for (int c = 0; c < nchannels; c++)
{
dData[c] = mean_m[c] - data[c];
dist2 += dData[c] * dData[c];
}
}

//background? - Tb - usually larger than Tg
if (totalWeight < TB && dist2 < Tb*var)
background = true;

//check fit
if (dist2 < Tg*var)
{
/////
//belongs to the mode
fitsPDF = true;

//update distribution

//update weight
weight += alphaT;
float k = alphaT / weight;

//update mean
for (int c = 0; c < nchannels; c++)
mean_m[c] -= k*dData[c];

//update variance
float varnew = var + k*(dist2 - var);
//limit the variance
varnew = MAX(varnew, varMin);
varnew = MIN(varnew, varMax);
gmm[mode].variance = varnew;

//sort
//all other weights are at the same place and
//only the matched (iModes) is higher -> just find the new place for it
for (int i = mode; i > 0; i--)
{
//check one up
if (weight < gmm[i - 1].weight)
break;

swap_count++;
//swap one up
std::swap(gmm[i], gmm[i - 1]);
for (int c = 0; c < nchannels; c++)
std::swap(mean[i*nchannels + c], mean[(i - 1)*nchannels + c]);
}
//belongs to the mode - bFitsPDF becomes 1
/////
}
}//!bFitsPDF)

//check prune
if (weight < -prune)
{
weight = 0.0;
nmodes--;
}

gmm[mode - swap_count].weight = weight;//update weight by the calculated value
totalWeight += weight;
}
//go through all modes
//////

//renormalize weights
totalWeight = 1.f / totalWeight;
for (int mode = 0; mode < nmodes; mode++)
{
gmm[mode].weight *= totalWeight;
}

nmodes = nNewModes;

//make new mode if needed and exit
if (!fitsPDF)
{
// replace the weakest or add a new one
int mode = nmodes == nmixtures ? nmixtures - 1 : nmodes++;

if (nmodes == 1)
gmm[mode].weight = 1.f;
else
{
gmm[mode].weight = alphaT;

// renormalize all other weights
for (int i = 0; i < nmodes - 1; i++)
gmm[i].weight *= alpha1;
}

// init
for (int c = 0; c < nchannels; c++)
mean[mode*nchannels + c] = data[c];

gmm[mode].variance = varInit;

//sort
//find the new place for it
for (int i = nmodes - 1; i > 0; i--)
{
// check one up
if (alphaT < gmm[i - 1].weight)
break;

// swap one up
std::swap(gmm[i], gmm[i - 1]);
for (int c = 0; c < nchannels; c++)
std::swap(mean[i*nchannels + c], mean[(i - 1)*nchannels + c]);
}
}

//set the number of modes
modesUsed[x] = uchar(nmodes);
mask[x] = background ? 0 :
detectShadows && detectShadowGMM(data, nchannels, nmodes, gmm, mean, Tb, TB, tau) ?
shadowVal : 255;
}
}
}

const Mat* src;
Mat* dst;
GMM* gmm0;
float* mean0;
uchar* modesUsed0;

int nmixtures;
float alphaT, Tb, TB, Tg;
float varInit, varMin, varMax, prune, tau;

bool detectShadows;
uchar shadowVal;

BinaryFunc cvtfunc;
};

BackgroundSubtractorMOG3::BackgroundSubtractorMOG3()
{
frameSize = Size(0, 0);
frameType = 0;

nframes = 0;
history = defaultHistory3;
varThreshold = defaultVarThreshold3;
bShadowDetection = 1;

nmixtures = defaultNMixtures3;
backgroundRatio = defaultBackgroundRatio3;
fVarInit = defaultVarInit3;
fVarMax = defaultVarMax3;
fVarMin = defaultVarMin3;

varThresholdGen = defaultVarThresholdGen3;
fCT = defaultfCT3;
nShadowDetection = defaultnShadowDetection3;
fTau = defaultfTau;
}

BackgroundSubtractorMOG3::BackgroundSubtractorMOG3(int _history, float _varThreshold, bool _bShadowDetection)
{
frameSize = Size(0, 0);
frameType = 0;

nframes = 0;
history = _history > 0 ? _history : defaultHistory3;
varThreshold = (_varThreshold>0) ? _varThreshold : defaultVarThreshold3;
bShadowDetection = _bShadowDetection;

nmixtures = defaultNMixtures3;
backgroundRatio = defaultBackgroundRatio3;
fVarInit = defaultVarInit3;
fVarMax = defaultVarMax3;
fVarMin = defaultVarMin3;

varThresholdGen = defaultVarThresholdGen3;
fCT = defaultfCT3;
nShadowDetection = defaultnShadowDetection3;
fTau = defaultfTau;
}

BackgroundSubtractorMOG3::~BackgroundSubtractorMOG3()
{
}

void BackgroundSubtractorMOG3::initialize(Size _frameSize, int _frameType)
{
frameSize = _frameSize;
frameType = _frameType;
nframes = 0;

int nchannels = CV_MAT_CN(frameType);
CV_Assert(nchannels <= CV_CN_MAX);

// for each gaussian mixture of each pixel bg model we store ...
// the mixture weight (w),
// the mean (nchannels values) and
// the covariance
bgmodel.create(1, frameSize.height*frameSize.width*nmixtures*(2 + nchannels), CV_32F);
//make the array for keeping track of the used modes per pixel - all zeros at start
bgmodelUsedModes.create(frameSize, CV_8U);
bgmodelUsedModes = Scalar::all(0);
}

void BackgroundSubtractorMOG3::operator()(InputArray _image, OutputArray _fgmask, double learningRate)
{
Mat image = _image.getMat();
bool needToInitialize = nframes == 0 || learningRate >= 1 || image.size() != frameSize || image.type() != frameType;

if (needToInitialize)
initialize(image.size(), image.type());

_fgmask.create(image.size(), CV_8U);
Mat fgmask = _fgmask.getMat();

++nframes;
learningRate = learningRate >= 0 && nframes > 1 ? learningRate : 1. / min(2 * nframes, history);
CV_Assert(learningRate >= 0);

parallel_for_(Range(0, image.rows),
MOG3Invoker(image, fgmask,
(GMM*)bgmodel.data,
(float*)(bgmodel.data + sizeof(GMM)*nmixtures*image.rows*image.cols),
bgmodelUsedModes.data, nmixtures, (float)learningRate,
(float)varThreshold,
backgroundRatio, varThresholdGen,
fVarInit, fVarMin, fVarMax, float(-learningRate*fCT), fTau,
bShadowDetection, nShadowDetection));
}

void BackgroundSubtractorMOG3::getBackgroundImage(OutputArray backgroundImage) const
{
int nchannels = CV_MAT_CN(frameType);
CV_Assert(nchannels == 3);
Mat meanBackground(frameSize, CV_8UC3, Scalar::all(0));

int firstGaussianIdx = 0;
const GMM* gmm = (GMM*)bgmodel.data;
const Vec3f* mean = reinterpret_cast<const Vec3f*>(gmm + frameSize.width*frameSize.height*nmixtures);
for (int row = 0; row<meanBackground.rows; row++)
{
for (int col = 0; col<meanBackground.cols; col++)
{
int nmodes = bgmodelUsedModes.at<uchar>(row, col);
Vec3f meanVal;
float totalWeight = 0.f;
for (int gaussianIdx = firstGaussianIdx; gaussianIdx < firstGaussianIdx + nmodes; gaussianIdx++)
{
GMM gaussian = gmm[gaussianIdx];
meanVal += gaussian.weight * mean[gaussianIdx];
totalWeight += gaussian.weight;

if (totalWeight > backgroundRatio)
break;
}

meanVal *= (1.f / totalWeight);
meanBackground.at<Vec3b>(row, col) = Vec3b(meanVal);
firstGaussianIdx += nmixtures;
}
}

switch (CV_MAT_CN(frameType))
{
case 1:
{
vector<Mat> channels;
split(meanBackground, channels);
channels[0].copyTo(backgroundImage);
break;
}

case 3:
{
meanBackground.copyTo(backgroundImage);
break;
}

default:
CV_Error(CV_StsUnsupportedFormat, "");
}
}
}
         所封装的函数实际为opencv中的混合高斯背景建模算法,源码中包含了opencv的core.h 、cv.h头文件等,所使用的主要类和方法如下:

BackgroundSubtractorMOG3 mog(20, 16, false);

//参数为:输入图像、输出图像、学习速率
mog(frame, foreground, 0.005); //

三、将源码封装为dll过程

         在VS2010中新建一个win32->dll工程。建立的工程名为 MogBg3Dll,接着添加上述头文件和cpp文件如下,由于使用了opencv库,故要先把opencv和vs配置好

         头文件为:

#pragma once   //新增部分
#ifdef MogBg3LibDll
#define Mog3API _declspec(dllexport)
#else
#define Mog3API  _declspec(dllimport)
#endif

#include "opencv2/core/core.hpp"
#include <list>
#include"cv.h"
#include <iostream>
using namespace cv;

namespace OurMogBgs{

class Mog3API CV_EXPORTS_W BackgroundSubtractor : public Algorithm //多了 Mog3API
{
public:

virtual ~BackgroundSubtractor();
CV_WRAP_AS(apply) virtual void operator()(InputArray image, OutputArray fgmask,
double learningRate = 0);
virtual void getBackgroundImage(OutputArray backgroundImage) const;
};
class Mog3API CV_EXPORTS_W BackgroundSubtractorMOG3 : public BackgroundSubtractor  //多了 Mog3API
{
public:
CV_WRAP BackgroundSubtractorMOG3();
CV_WRAP BackgroundSubtractorMOG3(int history, float varThreshold, bool bShadowDetection = true);
virtual ~BackgroundSubtractorMOG3();
virtual void operator()(InputArray image, OutputArray fgmask, double learningRate = -1);
virtual void getBackgroundImage(OutputArray backgroundImage) const;
virtual void initialize(Size frameSize, int frameType);

protected:
Size frameSize;
int frameType;
Mat bgmodel;
Mat bgmodelUsedModes;
int nframes;
int history;
int nmixtures;
double varThreshold;
float backgroundRatio;
float varThresholdGen;
float fVarInit;
float fVarMin;
float fVarMax;
float fCT;
bool bShadowDetection;
unsigned char nShadowDetection;
float fTau;

};

}


cpp 文件开头增加一行:

#define MogBg3LibDll
        编译生成后,在debug文件夹生成相应的lib和dll 文件

    

四、调用封装的lib 和 dll

       新建一工程win32控制台项目,配置好opencv,将 MOG_BGS3.h 头文件添加到工程中,然后将lib 和 dll 文件拷贝至项目的可执行目录,并在 Properties->Linker->Input->  Additional Dependecies 中添加MogBg3Dll.lib

       可以在mian中使用了

       

#include <stdio.h>
#include <iostream>
#include <cv.h>
#include "opencv2/core/core.hpp"
#include < opencv2/highgui/highgui.hpp >
#include "MOG_BGS3.h"
using namespace cv;
using namespace std;
using namespace OurMogBgs;

int main()
{
VideoCapture capture("F:\\研二资料\\视频资料\\UMN Dataset\\Crowd-Activity-All.avi");
if (!capture.isOpened())
{
cout << "读取视频失败" << endl;
return -1;
}
//获取整个帧数
long totalframenumber = capture.get(CV_CAP_PROP_FRAME_COUNT);
cout << "整个视频共" << totalframenumber << "帧" << endl;

//设置开始帧()
long frametostart = 0;
capture.set(CV_CAP_PROP_FRAME_COUNT, frametostart);
cout << "从第" << frametostart << "帧开始读" << endl;

//设置结束帧
int frametostop = totalframenumber;

if (frametostop < frametostart)
{
cout << "结束帧小于开始帧,程序错误,即将退出!" << endl;
return -1;
}
else
{
cout << "结束帧为:第" << frametostop << "帧" << endl;
}

double rate = capture.get(CV_CAP_PROP_FPS);
int delay = 100 / rate;

Mat frame;
//前景图片
Mat foreground;
//背景图片
Mat background;

BackgroundSubtractorMOG3 mog(20, 16, false);
bool stop(false);
long currentframe = frametostart;
while (!stop)
{
if (!capture.read(frame))
{
cout << "从视频中读取图像失败或者读完整个视频" << endl;
return -2;
}

//从某一帧开始背景建模
currentframe++;
if (currentframe < 1454) continue;

//中值滤波去噪
//medianBlur(frame, frame,3);

imshow("输入视频", frame);
//参数为:输入图像、输出图像、学习速率
mog(frame, foreground, 0.005); //

mog.getBackgroundImage(background);   // 返回当前背景图像

imshow("前景", foreground);
imshow("背景", background);

//按esc键退出,按其他键会停止在当前帧

int c = waitKey(delay);

if ((char)c == 27 || currentframe >= frametostop)
{
stop = true;
}
if (c >= 0)
{
waitKey(0);
}

if (currentframe == 3004)
{
//imwrite("3004.png", foreground);
}

//cout << "\ncurrentframe:" << currentframe;

}

waitKey(0);
}
运行结果:

        

五、参考资料

多个类封装为dll :http://blog.csdn.net/GarfieldEr007/article/details/50499178
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息