您的位置:首页 > 编程语言 > Go语言

Sentinel 2 Atmospheric Correction in Google Earth Engine(使用GEE进行哨兵2数据大气校正)

2017-12-28 22:13 7273 查看


From and thanks to:
github/samsammurphy/gee-atmcorr-S2




Import modules


and initialize Earth Engine

In [3]:

import ee
from Py6S import *
import datetime
import math
import os
import sys
sys.path.append(os.path.join(os.path.dirname(os.getcwd()),'bin'))
from atmospheric import Atmospheric

ee.Initialize()



time and place

Define the time and place that you are looking for.

In [4]:

date = ee.Date('2017-01-01')
geom = ee.Geometry.Point(-157.816222, 21.297481)
geom = ee.Geometry.Point(12.670733, 41.826685)# ESRIN (ESA Earth Observation Centre)



an image

The following code will grab the first scene that occurs on or after date.

In [5]:

# The first Sentinel 2 image
S2 = ee.Image(
ee.ImageCollection('COPERNICUS/S2')
.filterBounds(geom)
.filterDate(date,date.advance(3,'month'))
.sort('system:time_start')
.first()
)

# top of atmosphere reflectance
toa = S2.divide(10000)



metadata

In [11]:

info = S2.getInfo()['properties']
scene_date = datetime.datetime.utcfromtimestamp(info['system:time_start']/1000)# i.e. Python uses seconds, EE uses milliseconds
solar_z = info['MEAN_SOLAR_ZENITH_ANGLE']



atmospheric constituents

In [12]:

h2o = Atmospheric.water(geom,date).getInfo()
o3 = Atmospheric.ozone(geom,date).getInfo()
aot = Atmospheric.aerosol(geom,date).getInfo()



target altitude (km)

In [13]:

SRTM = ee.Image('CGIAR/SRTM90_V4')# Shuttle Radar Topography mission covers *most* of the Earth
alt = SRTM.reduceRegion(reducer = ee.Reducer.mean(),geometry = geom.centroid()).get('elevation').getInfo()
km = alt/1000 # i.e. Py6S uses units of kilometers



6S object

The backbone of Py6S is the 6S (i.e. SixS) class. It allows you to define the various input parameters, to run the radiative transfer code and to access the outputs which are required to convert radiance to surface reflectance.

In [14]:

# Instantiate
s = SixS()

# Atmospheric constituents
s.atmos_profile = AtmosProfile.UserWaterAndOzone(h2o,o3)
s.aero_profile = AeroProfile.Continental
s.aot550 = aot

# Earth-Sun-satellite geometry
s.geometry = Geometry.User()
s.geometry.view_z = 0               # always NADIR (I think..)
s.geometry.solar_z = solar_z        # solar zenith angle
s.geometry.month = scene_date.month # month and day used for Earth-Sun distance
s.geometry.day = scene_date.day     # month and day used for Earth-Sun distance
s.altitudes.set_sensor_satellite_level()
s.altitudes.set_target_custom_altitude(km)



Spectral Response functions

Py6S uses the Wavelength class to handle the wavelength(s) associated with a given channel (a.k.a. waveband). This might be a single scalar value (e.g. a central wavelength) or, if known, possibly the spectral response function of the waveband. The Sentinel
2 spectral response functions are provided with Py6S (as well as those of a number of missions). For more details please see the docsor
the (comment-rich) source code

In [15]:

def spectralResponseFunction(bandname):
"""
Extract spectral response function for given band name
"""

bandSelect = {
'B1':PredefinedWavelengths.S2A_MSI_01,
'B2':PredefinedWavelengths.S2A_MSI_02,
'B3':PredefinedWavelengths.S2A_MSI_03,
'B4':PredefinedWavelengths.S2A_MSI_04,
'B5':PredefinedWavelengths.S2A_MSI_05,
'B6':PredefinedWavelengths.S2A_MSI_06,
'B7':PredefinedWavelengths.S2A_MSI_07,
'B7':PredefinedWavelengths.S2A_MSI_07,
'B8A':PredefinedWavelengths.S2A_MSI_09,
'B9':PredefinedWavelengths.S2A_MSI_10,
'B10':PredefinedWavelengths.S2A_MSI_11,
'B11':PredefinedWavelengths.S2A_MSI_12,
'B12':PredefinedWavelengths.S2A_MSI_13,
}

return Wavelength(bandSelect[bandname])



TOA Reflectance to Radiance

Sentinel 2 data is provided as top-of-atmosphere reflectance. Lets convert this to at-sensor radiance for the atmospheric correction.*

*You can atmospherically corrected directly from TOA reflectance. However, I suggest
radiance for a couple of reasons. Firstly, it is more intuitive. Instead of spherical albedo (which I suspect is more of a mathematical convenience than a physical property) you can use solar irradiance, transmissivity,
path radiance, etc. Secondly, Py6S seems to be more geared towards converting from radiance to SR</sup>

In [16]:

def toa_to_rad(bandname):
"""
Converts top of atmosphere reflectance to at-sensor radiance
"""

# solar exoatmospheric spectral irradiance
ESUN = info['SOLAR_IRRADIANCE_'+bandname]
solar_angle_correction = math.cos(math.radians(solar_z))

# Earth-Sun distance (from day of year)
doy = scene_date.timetuple().tm_yday
d = 1 - 0.01672 * math.cos(0.9856 * (doy-4))# http://physics.stackexchange.com/questions/177949/earth-sun-distance-on-a-given-day-of-the-year 
# conversion factor
multiplier = ESUN*solar_angle_correction/(math.pi*d**2)

# at-sensor radiance
rad = toa.select(bandname).multiply(multiplier)

return rad



Radiance to Surface Reflectance

Reflected sunlight can be described as follows (wavelength dependence is implied):



where L is at-sensor radiance, 

 is
transmissivity, 

 is
surface reflectance, 

 is
direct solar irradiance, 

 is
diffuse solar irradiance and 

 is
path radiance. There are five unknowns in this equation, 4 atmospheric terms (





 and 

)
and surface reflectance. The 6S radiative transfer code is used to solve for the atmospheric terms, allowing us to solve for surface reflectance.



In [17]:

def surface_reflectance(bandname):
"""
Calculate surface reflectance from at-sensor radiance given waveband name
"""

# run 6S for this waveband
s.wavelength = spectralResponseFunction(bandname)
s.run()

# extract 6S outputs
Edir = s.outputs.direct_solar_irradiance             #direct solar irradiance
Edif = s.outputs.diffuse_solar_irradiance            #diffuse solar irradiance
Lp   = s.outputs.atmospheric_intrinsic_radiance      #path radiance
absorb  = s.outputs.trans['global_gas'].upward       #absorption transmissivity
scatter = s.outputs.trans['total_scattering'].upward #scattering transmissivity
tau2 = absorb*scatter                                #total transmissivity

# radiance to surface reflectance
rad = toa_to_rad(bandname)
ref = rad.subtract(Lp).multiply(math.pi).divide(tau2*(Edir+Edif))

return ref



Atmospheric Correction

In [18]:

# original
# b = surface_reflectance('B2')
# g = surface_reflectance('B3')
# r = surface_reflectance('B4')
# rgb = r.addBands(g).addBands(b)

# all wavebands
output = S2.select('QA60')
for band in ['B1','B2','B3','B4','B5','B6','B7','B8','B8A','B9','B10','B11','B12']:
print(band)
output = output.addBands(surface_reflectance(band))


B1
B2
B3
B4
B5
B6
B7
B8


---------------------------------------------------------------------------
KeyError                                  Traceback (most recent call last)
<ipython-input-18-0eaa6deade39> in <module>()
9 for band in ['B1','B2','B3','B4','B5','B6','B7','B8','B8A','B9','B10','B11','B12']:
10     print(band)
---> 11     output = output.addBands(surface_reflectance(band))
12

<ipython-input-17-31b567fffbcd> in surface_reflectance(bandname)
5
6     # run 6S for this waveband
----> 7     s.wavelength = spectralResponseFunction(bandname)
8     s.run()
9

<ipython-input-15-46be73bfbf09> in spectralResponseFunction(bandname)
19         }
20
---> 21     return Wavelength(bandSelect[bandname])

KeyError: 'B8'



Display results

In [ ]:

from IPython.display import display, Image

region = geom.buffer(5000).bounds().getInfo()['coordinates']
channels = ['B4','B3','B2']

original = Image(url=toa.select(channels).getThumbUrl({
'region':region,
'min':0,
'max':0.25
}))

corrected = Image(url=ref.select(channels).getThumbUrl({
'region':region,
'min':0,
'max':0.25
}))

display(original, corrected)



Export to Asset

In [ ]:

# # set some properties for export
# dateString = scene_date.strftime("%Y-%m-%d")
# ref = ref.set({'satellite':'Sentinel 2',
#               'fileID':info['system:index'],
#               'date':dateString,
#               'aerosol_optical_thickness':aot,
#               'water_vapour':h2o,
#               'ozone':o3})


In [ ]:

# define YOUR assetID
# in my case it was something like this..
# assetID = 'users/samsammurphy/shared/sentinel2/6S/ESRIN_'+dateString


In [ ]:

# # export
# export = ee.batch.Export.image.toAsset(\
#     image=ref,
#     description='sentinel2_atmcorr_export',
#     assetId = assetID,
#     region = region,
#     scale = 30)

# # uncomment to run the export
# export.start()
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: