您的位置:首页 > 编程语言 > C语言/C++

NS-3之Tracing System

2017-12-20 17:04 316 查看
https://www.nsnam.org/docs/tutorial/html/tracing.html

注:1。因为我是边学边用,可能会有不正确的地方。

        2。C++是大学的时候学过的,但工作中很少用到,也是在NS3的学习过程中,遇到不懂的再去查阅C++Primer这本书籍的。可能会有遗漏或者错误的理解。

        3。持续性完善补充这篇文章,因为Tracing在NS3中是较为重要的一个部分。

tracing 用于追踪数据传递的信息

/* -*- Mode:C++; c-file-style:"gnu"; indent-tabs-mode:nil; -*- */
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation;
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
*/

#include <fstream>
#include "ns3/core-module.h"
#include "ns3/network-module.h"
#include "ns3/internet-module.h"
#include "ns3/point-to-point-module.h"
#include "ns3/applications-module.h"

using namespace ns3;

NS_LOG_COMPONENT_DEFINE ("TCPCONGESTIONWINDOW");

// ===========================================================================
//
//         node 0                 node 1
//   +----------------+    +----------------+
//   |    ns-3 TCP    |    |    ns-3 TCP    |
//   +----------------+    +----------------+
//   |    10.1.1.1    |    |    10.1.1.2    |
//   +----------------+    +----------------+
//   | point-to-point |    | point-to-point |
//   +----------------+    +----------------+
//           |                     |
//           +---------------------+
//                5 Mbps, 2 ms
//
//
// We want to look at changes in the ns-3 TCP congestion window.  We need
// to crank up a flow and hook the CongestionWindow attribute on the socket
// of the sender.  Normally one would use an on-off application to generate a
// flow, but this has a couple of problems.  First, the socket of the on-off
// application is not created until Application Start time, so we wouldn't be
// able to hook the socket (now) at configuration time.  Second, even if we
// could arrange a call after start time, the socket is not public so we
// couldn't get at it.
//
// So, we can cook up a simple version of the on-off application that does what
// we want.  On the plus side we don't need all of the complexity of the on-off
// application.  On the minus side, we don't have a helper, so we have to get
// a little more involved in the details, but this is trivial.
//
// So first, we create a socket and do the trace connect on it; then we pass
// this socket into the constructor of our simple application which we then
// install in the source node.
// ===========================================================================
//
class MyApp : public Application
{
public:

MyApp ();
virtual ~MyApp();

void Setup (Ptr<Socket> socket, Address address, uint32_t packetSize, uint32_t nPackets, DataRate dataRate);

private:
virtual void StartApplication (void);
virtual void StopApplication (void);

void ScheduleTx (void);
void SendPacket (void);

Ptr<Socket>     m_socket;
Address         m_peer;
uint32_t        m_packetSize;
uint32_t        m_nPackets;
DataRate        m_dataRate;
EventId         m_sendEvent;
bool            m_running;
uint32_t        m_packetsSent;
};

MyApp::MyApp ()
: m_socket (0),
m_peer (),
m_packetSize (0),
m_nPackets (0),
m_dataRate (0),
m_sendEvent (),
m_running (false),
m_packetsSent (0)
{
}

MyApp::~MyApp()
{
m_socket = 0;
}

void
MyApp::Setup (Ptr<Socket> socket, Address address, uint32_t packetSize, uint32_t nPackets, DataRate dataRate)
{
m_socket = socket;

4000
m_peer = address;
m_packetSize = packetSize;
m_nPackets = nPackets;
m_dataRate = dataRate;
}

void
MyApp::StartApplication (void)
{
m_running = true;
m_packetsSent = 0;
m_socket->Bind ();
m_socket->Connect (m_peer);
SendPacket ();
}

void
MyApp::StopApplication (void)
{
m_running = false;

if (m_sendEvent.IsRunning ())
{
Simulator::Cancel (m_sendEvent);
}

if (m_socket)
{
m_socket->Close ();
}
}

// to start the chain of events that describes the Application behavior
void
MyApp::SendPacket (void)
{
Ptr<Packet> packet = Create<Packet> (m_packetSize);

m_socket->Send (packet);

if (++m_packetsSent < m_nPackets)
{
ScheduleTx ();
}
}

// keep scheduling the chain of events
void
MyApp::ScheduleTx (void)
{
if (m_running)
{
// to schedule another transmit event (a SendPacket) until the Application decides it has sent enough.
Time tNext (Seconds (m_packetSize * 8 / static_cast<double> (m_dataRate.GetBitRate ())));
m_sendEvent = Simulator::Schedule (tNext, &MyApp::SendPacket, this);
}
}

static void
CwndChange (uint32_t oldCwnd, uint32_t newCwnd)
{
// logs the current simulation time and the new value of the congestion window every time it is changed.
// can load the resulting output into a graphic program and immediately see a graph of the
// congestion window behavior over time.
NS_LOG_UNCOND ("CwndChange at " << Simulator::Now ().GetSeconds () << "\t" << newCwnd);
}

static void
RxDrop (Ptr<const Packet> p)
{
// this trace source of the point-to-point NetDevice
// this trace source fires when a packet is dropped by the physical layer of a NetDevice.
NS_LOG_UNCOND ("RxDrop at " << Simulator::Now ().GetSeconds ());
}

int
main (int argc, char *argv[])
{
CommandLine cmd;
cmd.Parse (argc, argv);

// create two nodes
NodeContainer nodes;
nodes.Create (2);

// point-to-point channel
PointToPointHelper pointToPoint;
pointToPoint.SetDeviceAttribute ("DataRate", StringValue ("5Mbps"));
pointToPoint.SetChannelAttribute ("Delay", StringValue ("2ms"));

NetDeviceContainer devices;
devices = pointToPoint.Install (nodes);

// we really want to introduce link errors which will drop packets,cause
// duplicate ACKs and trigger the more interesting behaviors of the congestion window.
// errorModel can be attached to Channels,
// using the RateErrorModel which allow us to introduce errors into a Channel at a given rate
// instantiates a RateErrorModel Object
Ptr<RateErrorModel> em = CreateObject<RateErrorModel> ();
// set the resulting instantiated RateRrrorModel
em->SetAttribute ("ErrorRate", DoubleValue (0.00001));
// the error model used by the point-to-point NetDevice
devices.Get (1)->SetAttribute ("ReceiveErrorModel", PointerValue (em));

// installs internet stacks on our two nodes
InternetStackHelper stack;
stack.Install (nodes);

// creates interfaces and assigns IP addresses for the point-to-point devices
Ipv4AddressHelper address;
address.SetBase ("10.1.1.0", "255.255.255.252");
Ipv4InterfaceContainer interfaces = address.Assign (devices);

// since we use TCP, we need something on the destination Node to receive TCP connections
// and data.
// The PacketSink Application is commonly used in ns-3 for that purpose.
uint16_t sinkPort = 8080;
Address sinkAddress (InetSocketAddress (interfaces.GetAddress (1), sinkPort));
// instantiates a PacketSinkHelper and tells it to create sockets using the class ns3::TcpSocketFactory
// Ipv4Address and the sinkPort is the Application should Bind to
PacketSinkHelper packetSinkHelper ("ns3::TcpSocketFactory", InetSocketAddress (Ipv4Address::GetAny (), sinkPort));
ApplicationContainer sinkApps = packetSinkHelper.Install (nodes.Get (1));
sinkApps.Start (Seconds (0.));
sinkApps.Stop (Seconds (20.));

// create the socket and connect the trace source.
// calls the static member function Socket::CreateSocket and provides a Node and an
// explicit TypeId for the object factory used to create the socket.
Ptr<Socket> ns3TcpSocket = Socket::CreateSocket (nodes.Get (0), TcpSocketFactory::GetTypeId ());
// use TraceConnectWithoutContext to connect the CongestionWindow trace source to trace sink.
ns3TcpSocket->TraceConnectWithoutContext ("CongestionWindow", MakeCallback (&CwndChange));

Ptr<MyApp> app = CreateObject<MyApp> ();
app->Setup (ns3TcpSocket, sinkAddress, 1040, 1000, DataRate ("1Mbps"));
nodes.Get (0)->AddApplication (app);
app->SetStartTime (Seconds (1.));
app->SetStopTime (Seconds (20.));

// need to actually do the connect from the receiver point-to-point NetDevice drop event
// to our RxDrop callback now.
devices.Get (1)->TraceConnectWithoutContext ("PhyRxDrop", MakeCallback (&RxDrop));

Simulator::Stop (Seconds (20));
Simulator::Run ();
Simulator::Destroy ();

return 0;
}


带注释的源码,便于理解tracing的原理和机制

/* -*- Mode:C++; c-file-style:"gnu"; indent-tabs-mode:nil; -*- */
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation;
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
*/

#include <fstream>
#include "ns3/core-module.h"
#include "ns3/network-module.h"
#include "ns3/internet-module.h"
#include "ns3/point-to-point-module.h"
#include "ns3/applications-module.h"

using namespace ns3;

NS_LOG_COMPONENT_DEFINE ("SixthScriptExample");

// ===========================================================================
//
//         node 0                 node 1
//   +----------------+    +----------------+
//   |    ns-3 TCP    |    |    ns-3 TCP    |
//   +----------------+    +----------------+
//   |    10.1.1.1    |    |    10.1.1.2    |
//   +----------------+    +----------------+
//   | point-to-point |    | point-to-point |
//   +----------------+    +----------------+
//           |                     |
//           +---------------------+
//                5 Mbps, 2 ms
//
//
// We want to look at changes in the ns-3 TCP congestion window.  We need
// to crank up a flow and hook the CongestionWindow attribute on the socket
// of the sender.  Normally one would use an on-off application to generate a
// flow, but this has a couple of problems.  First, the socket of the on-off
// application is not created until Application Start time, so we wouldn't be
// able to hook the socket (now) at configuration time.  Second, even if we
// could arrange a call after start time, the socket is not public so we
// couldn't get at it.
//
// So, we can cook up a simple version of the on-off application that does what
// we want.  On the plus side we don't need all of the complexity of the on-off
// application.  On the minus side, we don't have a helper, so we have to get
// a little more involved in the details, but this is trivial.
//
// So first, we create a socket and do the trace connect on it; then we pass
// this socket into the constructor of our simple application which we then
// install in the source node.
// ===========================================================================
//
class MyApp : public Application
{
public:
MyApp ();
virtual ~MyApp ();

/**
* Register this type.
* \return The TypeId.
*/
static TypeId GetTypeId (void);
void Setup (Ptr<Socket> socket, Address address, uint32_t packetSize, uint32_t nPackets, DataRate dataRate);

private:
virtual void StartApplication (void);
virtual void StopApplication (void);

void ScheduleTx (void);
void SendPacket (void);

Ptr<Socket>     m_socket;
Address         m_peer;
uint32_t        m_packetSize;
uint32_t        m_nPackets;
DataRate        m_dataRate;
EventId         m_sendEvent;
bool            m_running;
uint32_t        m_packetsSent;
};

MyApp::MyApp ()
: m_socket (0),
m_peer (),
m_packetSize (0),
m_nPackets (0),
m_dataRate (0),
m_sendEvent (),
m_running (false),
m_packetsSent (0)
{
}

MyApp::~MyApp ()
{
m_socket = 0;
}

/* static */
TypeId MyApp::GetTypeId (void)
{
static TypeId tid = TypeId ("MyApp")
.SetParent<Application> ()
.SetGroupName ("Tutorial")
.AddConstructor<MyApp> ()
;
return tid;
}

void
MyApp::Setup (Ptr<Socket> socket, Address address, uint32_t packetSize, uint32_t nPackets, DataRate dataRate)
{
m_socket = socket;
m_peer = address;
m_packetSize = packetSize;
m_nPackets = nPackets;
m_dataRate = dataRate;
}

void
MyApp::StartApplication (void)
{
m_running = true;
m_packetsSent = 0;
m_socket->Bind ();
m_socket->Connect (m_peer);
SendPacket ();
}

void
MyApp::StopApplication (void)
{
m_running = false;

if (m_sendEvent.IsRunning ())
{
Simulator::Cancel (m_sendEvent);
}

if (m_socket)
{
m_socket->Close ();
}
}

void
MyApp::SendPacket (void)
{
Ptr<Packet> packet = Create<Packet> (m_packetSize);
m_socket->Send (packet);

if (++m_packetsSent < m_nPackets)
{
ScheduleTx ();
}
}

void
MyApp::ScheduleTx (void)
{
if (m_running)
{
Time tNext (Seconds (m_packetSize * 8 / static_cast<double> (m_dataRate.GetBitRate ())));
m_sendEvent = Simulator::Schedule (tNext, &MyApp::SendPacket, this);
}
}

// stream : This is an object that holds(keeps safely alive) a c++ output stream.
// It turns out that this is a very simple object, but one that manages lifetime issues for the stram and solves
// a problem that even experienced c++ users run into.
static void
CwndChange (Ptr<OutputStreamWrapper> stream, uint32_t oldCwnd, uint32_t newCwnd)
{
NS_LOG_UNCOND (Simulator::Now ().GetSeconds () << "\t" << newCwnd);
*stream->GetStream () << Simulator::Now ().GetSeconds () << "\t" << oldCwnd << "\t" << newCwnd << std::endl;
}

static void
RxDrop (Ptr<PcapFileWrapper> file, Ptr<const Packet> p)
{
NS_LOG_UNCOND ("RxDrop at " << Simulator::Now ().GetSeconds ());
file->Write (Simulator::Now (), p);
}

int
main (int argc, char *argv[])
{
CommandLine cmd;
cmd.Parse (argc, argv);

NodeContainer nodes;
nodes.Create (2);

PointToPointHelper pointToPoint;
pointToPoint.SetDeviceAttribute ("DataRate", StringValue ("5Mbps"));
pointToPoint.SetChannelAttribute ("Delay", StringValue ("2ms"));

NetDeviceContainer devices;
devices = pointToPoint.Install (nodes);

Ptr<RateErrorModel> em = CreateObject<RateErrorModel> ();
em->SetAttribute ("ErrorRate", DoubleValue (0.00001));
devices.Get (1)->SetAttribute ("ReceiveErrorModel", PointerValue (em));

InternetStackHelper stack;
stack.Install (nodes);

Ipv4AddressHelper address;
address.SetBase ("10.1.1.0", "255.255.255.252");
Ipv4InterfaceContainer interfaces = address.Assign (devices);

uint16_t sinkPort = 8080;
Address sinkAddress (InetSocketAddress (interfaces.GetAddress (1), sinkPort));
PacketSinkHelper packetSinkHelper ("ns3::TcpSocketFactory", InetSocketAddress (Ipv4Address::GetAny (), sinkPort));
ApplicationContainer sinkApps = packetSinkHelper.Install (nodes.Get (1));
sinkApps.Start (Seconds (0.));
sinkApps.Stop (Seconds (20.));

Ptr<Socket> ns3TcpSocket = Socket::CreateSocket (nodes.Get (0), TcpSocketFactory::GetTypeId ());

Ptr<MyApp> app = CreateObject<MyApp> ();
app->Setup (ns3TcpSocket, sinkAddress, 1040, 1000, DataRate ("1Mbps"));
nodes.Get (0)->AddApplication (app);
app->SetStartTime (Seconds (1.));
app->SetStopTime (Seconds (20.));

AsciiTraceHelper asciiTraceHelper;
Ptr<OutputStreamWrapper> stream = asciiTraceHelper.CreateFileStream ("sixth.cwnd");
ns3TcpSocket->TraceConnectWithoutContext ("CongestionWindow", MakeBoundCallback (&CwndChange, stream));

PcapHelper pcapHelper;
Ptr<PcapFileWrapper> file = pcapHelper.CreateFile ("sixth.pcap", std::ios::out, PcapHelper::DLT_PPP);
devices.Get (1)->TraceConnectWithoutContext ("PhyRxDrop", MakeBoundCallback (&RxDrop, file));

Simulator::Stop (Seconds (20));
Simulator::Run ();
Simulator::Destroy ();

return 0;
}


将tracing信息导出成可用文件,可用于进一步分析。
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签:  ns3 c++