您的位置:首页 > 理论基础 > 计算机网络

用 Go 构建一个区块链 -- Part 7: 网络

2017-11-14 20:31 579 查看
翻译的系列文章我已经放到了 GitHub 上:blockchain-tutorial,后续如有更新都会在 GitHub 上,可能就不在这里同步了。如果想直接运行代码,也可以 clone GitHub 上的教程仓库,进入 src 目录执行
make
即可。

引言

到目前为止,我们所构建的原型已经具备了区块链所有的关键特性:匿名,安全,随机生成的地址;区块链数据存储;工作量证明系统;可靠地存储交易。尽管这些特性都不可或缺,但是仍有不足。能够使得这些特性真正发光发热,使得加密货币成为可能的,是网络(network)。如果实现的这样一个区块链仅仅运行在单一节点上,有什么用呢?如果只有一个用户,那么这些基于密码学的特性,又有什么用呢?正是由于网络,才使得整个机制能够运转和发光发热。

你可以将这些区块链特性认为是规则(rule),类似于人类在一起生活,繁衍生息建立的规则,一种社会安排。区块链网络就是一个程序社区,里面的每个程序都遵循同样的规则,正是由于遵循着同一个规则,才使得网络能够长存。类似的,当人们都有着同样的想法,就能够将拳头攥在一起构建一个更好的生活。如果有人遵循着不同的规则,那么他们就将生活在一个分裂的社区(州,公社,等等)中。同样的,如果有区块链节点遵循不同的规则,那么也会形成一个分裂的网络。

重点在于:如果没有网络,或者大部分节点都不遵守同样的规则,那么规则就会形同虚设,毫无用处!

声明:不幸的是,我并没有足够的时间来实现一个真实的 P2P 网络原型。本文我会展示一个最常见的场景,这个场景涉及不同类型的节点。继续改进这个场景,将它实现为一个 P2P 网络,对你来说是一个很好的挑战和实践!除了本文的场景,我也无法保证在其他场景将会正常工作。抱歉!

本文的代码实现变化很大,请点击 这里 查看所有的代码更改。

区块链网络

区块链网络是去中心化的,这意味着没有服务器,客户端也不需要依赖服务器来获取或处理数据。在区块链网络中,有的是节点,每个节点是网络的一个完全(full-fledged)成员。节点就是一切:它既是一个客户端,也是一个服务器。这一点需要牢记于心,因为这与传统的网页应用非常不同。

区块链网络是一个 P2P(Peer-to-Peer,端到端)的网络,即节点直接连接到其他节点。它的拓扑是扁平的,因为在节点的世界中没有层级之分。下面是它的示意图:



Business vector created by Dooder - Freepik.com

要实现这样一个网络节点更加困难,因为它们必须执行很多操作。每个节点必须与很多其他节点进行交互,它必须请求其他节点的状态,与自己的状态进行比较,当状态过时时进行更新。

节点角色

尽管节点具有完备成熟的属性,但是它们也可以在网络中扮演不同角色。比如:

矿工

这样的节点运行于强大或专用的硬件(比如 ASIC)之上,它们唯一的目标是,尽可能快地挖出新块。矿工是区块链中唯一可能会用到工作量证明的角色,因为挖矿实际上意味着解决 PoW 难题。在权益证明 PoS 的区块链中,没有挖矿。

全节点

这些节点验证矿工挖出来的块的有效性,并对交易进行确认。为此,他们必须拥有区块链的完整拷贝。同时,全节点执行路由操作,帮助其他节点发现彼此。对于网络来说,非常重要的一段就是要有足够多的全节点。因为正是这些节点执行了决策功能:他们决定了一个块或一笔交易的有效性。

SPV

SPV 表示 Simplified Payment Verification,简单支付验证。这些节点并不存储整个区块链副本,但是仍然能够对交易进行验证(不过不是验证全部交易,而是一个交易子集,比如,发送到某个指定地址的交易)。一个 SPV 节点依赖一个全节点来获取数据,可能有多个 SPV 节点连接到一个全节点。SPV 使得钱包应用成为可能:一个人不需要下载整个区块链,但是仍能够验证他的交易。

网络简化

为了在目前的区块链原型中实现网络,我们不得不简化一些事情。因为我们没有那么多的计算机来模拟一个多节点的网络。当然,我们可以使用虚拟机或是 Docker 来解决这个问题,但是这会使一切都变得更复杂:你将不得不先解决可能出现的虚拟机或 Docker 问题,而我的目标是将全部精力都放在区块链实现上。所以,我们想要在一台机器上运行多个区块链节点,同时希望它们有不同的地址。为了实现这一点,我们将使用端口号作为节点标识符,而不是使用 IP 地址,比如将会有这样地址的节点:127.0.0.1:3000127.0.0.1:3001127.0.0.1:3002 等等。我们叫它端口节点(port node) ID,并使用环境变量
NODE_ID
对它们进行设置。故而,你可以打开多个终端窗口,设置不同的
NODE_ID
运行不同的节点。

这个方法也需要有不同的区块链和钱包文件。它们现在必须依赖于节点 ID 进行命名,比如 blockchain_3000.db, blockchain_30001.db and wallet_3000.db, wallet_30001.db 等等。

实现

所以,当你下载 Bitcoin Core 并首次运行时,到底发生了什么呢?它必须连接到某个节点下载最新状态的区块链。考虑到你的电脑并没有意识到所有或是部分的比特币节点,那么连接到的“某个节点”到底是什么?

在 Bitcoin Core 中硬编码一个地址,已经被证实是一个错误:因为节点可能会被攻击或关机,这会导致新的节点无法加入到网络中。在 Bitcoin Core 中,硬编码了 DNS seeds。虽然这些并不是节点,但是 DNS 服务器知道一些节点的地址。当你启动一个全新的 Bitcoin Core 时,它会连接到一个种子节点,获取全节点列表,随后从这些节点中下载区块链。

不过在我们目前的实现中,无法做到完全的去中心化,因为会出现中心化的特点。我们会有三个节点:

一个中心节点。所有其他节点都会连接到这个节点,这个节点会在其他节点之间发送数据。

一个矿工节点。这个节点会在内存池中存储新的交易,当有足够的交易时,它就会打包挖出一个新块。

一个钱包节点。这个节点会被用作在钱包之间发送币。但是与 SPV 节点不同,它存储了区块链的一个完整副本。

场景

本文的目标是实现如下场景:

中心节点创建一个区块链。

一个其他(钱包)节点连接到中心节点并下载区块链。

另一个(矿工)节点连接到中心节点并下载区块链。

钱包节点创建一笔交易。

矿工节点接收交易,并将交易保存到内存池中。

当内存池中有足够的交易时,矿工开始挖一个新块。

当挖出一个新块后,将其发送到中心节点。

钱包节点与中心节点进行同步。

钱包节点的用户检查他们的支付是否成功。

这就是比特币中的一般流程。尽管我们不会实现一个真实的 P2P 网络,但是我们会实现一个真是,也是比特币最常见最重要的用户场景。

版本

节点通过消息(message)进行交流。当一个新的节点开始运行时,它会从一个 DNS 种子获取几个节点,给它们发送
version
消息,在我们的实现看起来就像是这样:

type version struct {
Version    int
BestHeight int
AddrFrom   string
}


由于我们仅有一个区块链版本,所以
Version
字段实际并不会存储什么重要信息。
BestHeight
存储区块链中节点的高度。
AddFrom
存储发送者的地址。

接收到
version
消息的节点应该做什么呢?它会响应自己的
version
消息。这是一种握手��:如果没有事先互相问候,就不可能有其他交流。不过,这并不是处于礼貌:
version
用于找到一个更长的区块链。当一个节点接收到
version
消息,它会检查本节点的区块链是否比
BestHeight
的值更大。如果不是,节点就会请求并下载缺失的块。

为了接收消息,我们需要一个服务器:

var nodeAddress string
var knownNodes = []string{"localhost:3000"}

func StartServer(nodeID, minerAddress string) {
nodeAddress = fmt.Sprintf("localhost:%s", nodeID)
miningAddress = minerAddress
ln, err := net.Listen(protocol, nodeAddress)
defer ln.Close()

bc := NewBlockchain(nodeID)

if nodeAddress != knownNodes[0] {
sendVersion(knownNodes[0], bc)
}

for {
conn, err := ln.Accept()
go handleConnection(conn, bc)
}
}


首先,我们对中心节点的地址进行硬编码:因为每个节点必须知道从何处开始初始化。
minerAddress
参数指定了接收挖矿奖励的地址。代码片段:

if nodeAddress != knownNodes[0] {
sendVersion(knownNodes[0], bc)
}


这意味着如果当前节点不是中心节点,它必须向中心节点发送
version
消息来查询是否自己的区块链已过时。

func sendVersion(addr string, bc *Blockchain) {
bestHeight := bc.GetBestHeight()
payload := gobEncode(version{nodeVersion, bestHeight, nodeAddress})

request := append(commandToBytes("version"), payload...)

sendData(addr, request)
}


我们的消息,在底层就是字节序列。前 12 个字节指定了命令名(比如这里的
version
),后面的字节会包含 gob 编码的消息结构,
commandToBytes
看起来是这样:

func commandToBytes(command string) []byte {
var bytes [commandLength]byte

for i, c := range command {
bytes[i] = byte(c)
}

return bytes[:]
}


它创建一个 12 字节的缓冲区,并用命令名进行填充,将剩下的字节置为空。下面一个相反的函数:

func bytesToCommand(bytes []byte) string {
var command []byte

for _, b := range bytes {
if b != 0x0 {
command = append(command, b)
}
}

return fmt.Sprintf("%s", command)
}


当一个节点接收到一个命令,它会运行
bytesToCommand
来提取命令名,并选择正确的处理器处理命令主体:

func handleConnection(conn net.Conn, bc *Blockchain) {
request, err := ioutil.ReadAll(conn)
command := bytesToCommand(request[:commandLength])
fmt.Printf("Received %s command\n", command)

switch command {
...
case "version":
handleVersion(request, bc)
default:
fmt.Println("Unknown command!")
}

conn.Close()
}


下面是
version
命令处理器:

func handleVersion(request []byte, bc *Blockchain) {
var buff bytes.Buffer
var payload verzion

buff.Write(request[commandLength:])
dec := gob.NewDecoder(&buff)
err := dec.Decode(&payload)

myBestHeight := bc.GetBestHeight()
foreignerBestHeight := payload.BestHeight

if myBestHeight < foreignerBestHeight {
sendGetBlocks(payload.AddrFrom)
} else if myBestHeight > foreignerBestHeight {
sendVersion(payload.AddrFrom, bc)
}

if !nodeIsKnown(payload.AddrFrom) {
knownNodes = append(knownNodes, payload.AddrFrom)
}
}


首先,我们需要对请求进行解码,提取有效信息。所有的处理器在这部分都类似,所以我们会下面的代码片段中略去这部分。

然后节点将从消息中提取的
BestHeight
与自身进行比较。如果自身节点的区块链更长,它会回复
version
消息;否则,它会发送
getblocks
消息。

getblocks

type getblocks struct {
AddrFrom string
}


getblocks
意为 “给我看一下你有什么区块”(在比特币中,这会更加复杂)。注意,它并没有说“把你全部的区块给我”,而是请求了一个块哈希的列表。这是为了减轻网络负载,因为区块可以从不同的节点下载,并且我们不想从一个单一节点下载数十 GB 的数据。

处理命令十分简单:

func handleGetBlocks(request []byte, bc *Blockchain) {
...
blocks := bc.GetBlockHashes()
sendInv(payload.AddrFrom, "block", blocks)
}


在我们简化版的实现中,它会返回 所有块哈希

inv

type inv struct {
AddrFrom string
Type     string
Items    [][]byte
}


比特币使用
inv
来向其他节点展示当前节点有什么块和交易。再次提醒,它没有包含完整的区块链和交易,仅仅是哈希而已。
Type
字段表明了这是块还是交易。

处理
inv
稍显复杂:

func handleInv(request []byte, bc *Blockchain) {
...
fmt.Printf("Recevied inventory with %d %s\n", len(payload.Items), payload.Type)

if payload.Type == "block" {
blocksInTransit = payload.Items

blockHash := payload.Items[0]
sendGetData(payload.AddrFrom, "block", blockHash)

newInTransit := [][]byte{}
for _, b := range blocksInTransit {
if bytes.Compare(b, blockHash) != 0 {
newInTransit = append(newInTransit, b)
}
}
blocksInTransit = newInTransit
}

if payload.Type == "tx" {
txID := payload.Items[0]

if mempool[hex.EncodeToString(txID)].ID == nil {
sendGetData(payload.AddrFrom, "tx", txID)
}
}
}


如果收到块哈希,我们想要将它们保存在
blocksInTransit
变量来跟踪已下载的块。这能够让我们从不同的节点下载块。在将块置于传送状态时,我们给
inv
消息的发送者发送
getdata
命令并更新
blocksInTransit
。在一个真实的 P2P 网络中,我们会想要从不同节点来传送块。

在我们的实现中,我们永远也不会发送有多重哈希的
inv
。这就是为什么当
payload.Type == "tx"
时,只会拿到第一个哈希。然后我们检查是否在内存池中已经有了这个哈希,如果没有,发送
getdata
消息。

getdata

type getdata struct {
AddrFrom string
Type     string
ID       []byte
}


getdata
用于某个块或交易的请求,它可以仅包含一个块或交易的 ID。

func handleGetData(request []byte, bc *Blockchain) {
...
if payload.Type == "block" {
block, err := bc.GetBlock([]byte(payload.ID))

sendBlock(payload.AddrFrom, &block)
}

if payload.Type == "tx" {
txID := hex.EncodeToString(payload.ID)
tx := mempool[txID]

sendTx(payload.AddrFrom, &tx)
}
}


这个处理器比较地直观:如果它们请求一个块,则返回块;如果它们请求一笔交易,则返回交易。注意,我们并不检查实际上是否已经有了这个块或交易。这是一个缺陷 :)

block 和 tx

type block struct {
AddrFrom string
Block    []byte
}

type tx struct {
AddFrom     string
Transaction []byte
}


实际完成数据转移的正是这些消息。

处理
block
消息十分简单:

func handleBlock(request []byte, bc *Blockchain) {
...

blockData := payload.Block
block := DeserializeBlock(blockData)

fmt.Println("Recevied a new block!")
bc.AddBlock(block)

fmt.Printf("Added block %x\n", block.Hash)

if len(blocksInTransit) > 0 {
blockHash := blocksInTransit[0]
sendGetData(payload.AddrFrom, "block", blockHash)

blocksInTransit = blocksInTransit[1:]
} else {
UTXOSet := UTXOSet{bc}
UTXOSet.Reindex()
}
}


当接收到一个新块时,我们把它放到区块链里面。如果还有更多的区块需要下载,我们继续从上一个下载的块的那个节点继续请求。当最后把所有块都下载完后,对 UTXO 集进行重新索引。

TODO:并非无条件信任,我们应该在将每个块加入到区块链之前对它们进行验证。

TODO: 并非运行 UTXOSet.Reindex(), 而是应该使用 UTXOSet.Update(block),因为如果区块链很大,它将需要很多时间来对整个 UTXO 集重新索引。

处理
tx
消息是最困难的部分:

func handleTx(request []byte, bc *Blockchain) {
...
txData := payload.Transaction
tx := DeserializeTransaction(txData)
mempool[hex.EncodeToString(tx.ID)] = tx

if nodeAddress == knownNodes[0] {
for _, node := range knownNodes {
if node != nodeAddress && node != payload.AddFrom {
sendInv(node, "tx", [][]byte{tx.ID})
}
}
} else {
if len(mempool) >= 2 && len(miningAddress) > 0 {
MineTransactions:
var txs []*Transaction

for id := range mempool {
tx := mempool[id]
if bc.VerifyTransaction(&tx) {
txs = append(txs, &tx)
}
}

if len(txs) == 0 {
fmt.Println("All transactions are invalid! Waiting for new ones...")
return
}

cbTx := NewCoinbaseTX(miningAddress, "")
txs = append(txs, cbTx)

newBlock := bc.MineBlock(txs)
UTXOSet := UTXOSet{bc}
UTXOSet.Reindex()

fmt.Println("New block is mined!")

for _, tx := range txs {
txID := hex.EncodeToString(tx.ID)
delete(mempool, txID)
}

for _, node := range knownNodes {
if node != nodeAddress {
sendInv(node, "block", [][]byte{newBlock.Hash})
}
}

if len(mempool) > 0 {
goto MineTransactions
}
}
}
}


首先要做的事情是将新交易放到内存池中(再次提醒,在将交易放到内存池之前,必要对其进行验证)。下个片段:

if nodeAddress == knownNodes[0] {
for _, node := range knownNodes {
if node != nodeAddress && node != payload.AddFrom {
sendInv(node, "tx", [][]byte{tx.ID})
}
}
}


检查当前节点是否是中心节点。在我们的实现中,中心节点并不会挖矿。它只会将新的交易推送给网络中的其他节点。

下一个很大的代码片段是矿工节点“专属”。让我们对它进行一下分解:

if len(mempool) >= 2 && len(miningAddress) > 0 {


miningAddress
只会在矿工节点上设置。如果当前节点(矿工)的内存池中有两笔或更多的交易,开始挖矿:

for id := range mempool {
tx := mempool[id]
if bc.VerifyTransaction(&tx) {
txs = append(txs, &tx)
}
}

if len(txs) == 0 {
fmt.Println("All transactions are invalid! Waiting for new ones...")
return
}


首先,内存池中所有交易都是通过验证的。无效的交易会被忽略,如果没有有效交易,则挖矿中断。

cbTx := NewCoinbaseTX(miningAddress, "")
txs = append(txs, cbTx)

newBlock := bc.MineBlock(txs)
UTXOSet := UTXOSet{bc}
UTXOSet.Reindex()

fmt.Println("New block is mined!")


验证后的交易被放到一个块里,同时还有附带奖励的 coinbase 交易。当块被挖出来以后,UTXO 集会被重新索引。

TODO: 提醒,应该使用 UTXOSet.Update 而不是 UTXOSet.Reindex.

for _, tx := range txs {
txID := hex.EncodeToString(tx.ID)
delete(mempool, txID)
}

for _, node := range knownNodes {
if node != nodeAddress {
sendInv(node, "block", [][]byte{newBlock.Hash})
}
}

if len(mempool) > 0 {
goto MineTransactions
}


当一笔交易被挖出来以后,就会被从内存池中移除。当前节点所连接到的所有其他节点,接收带有新块哈希的
inv
消息。在处理完消息后,它们可以对块进行请求。

结果

让我们来回顾一下上面定义的场景。

首先,在第一个终端窗口中将
NODE_ID
设置为 3000(
export NODE_ID=3000
)。为了让你知道什么节点执行什么操作,我会使用像 NODE 3000NODE 3001 进行标识。

NODE 3000

创建一个钱包和一个新的区块链:

$ blockchain_go createblockchain -address CENTREAL_NODE


(为了简洁起见,我会使用假地址。)

然后,会生成一个仅包含创世块的区块链。我们需要保存块,并在其他节点使用。创世块承担了一条链标识符的角色(在 Bitcoin Core 中,创世块是硬编码的)

$ cp blockchain_3000.db blockchain_genesis.db


NODE 3001

接下来,打开一个新的终端窗口,将 node ID 设置为 3001。这会作为一个钱包节点。通过
blockchain_go createwallet
生成一些地址,我们把这些地址叫做 WALLET_1, WALLET_2, WALLET_3.

NODE 3000

向钱包地址发送一些币:

$ blockchain_go send -from CENTREAL_NODE -to WALLET_1 -amount 10 -mine
$ blockchain_go send -from CENTREAL_NODE -to WALLET_2 -amount 10 -mine


-mine
标志指的是块会立刻被同一节点挖出来。我们必须要有这个标志,因为初始状态时,网络中没有矿工节点。

启动节点:

$ blockchain_go startnode


这个节点会持续运行,直到本文定义的场景结束。

NODE 3001

启动上面保存创世块节点的区块链:

$ cp blockchain_genesis.db blockchain_3001.db


运行节点:

$ blockchain_go startnode


它会从中心节点下载所有区块。为了检查一切正常,暂停节点运行并检查余额:

$ blockchain_go getbalance -address WALLET_1
Balance of 'WALLET_1': 10

$ blockchain_go getbalance -address WALLET_2
Balance of 'WALLET_2': 10


你还可以检查
CENTRAL_NODE
地址的余额,因为 node 3001 现在有它自己的区块链:

$ blockchain_go getbalance -address CENTRAL_NODE
Balance of 'CENTRAL_NODE': 10


NODE 3002

打开一个新的终端窗口,将它的 ID 设置为 3002,然后生成一个钱包。这会是一个矿工节点。初始化区块链:

$ cp blockchain_genesis.db blockchain_3002.db


启动节点:

$ blockchain_go startnode -miner MINER_WALLET


NODE 3001

发送一些币:

$ blockchain_go send -from WALLET_1 -to WALLET_3 -amount 1
$ blockchain_go send -from WALLET_2 -to WALLET_4 -amount 1


NODE 3002

迅速切换到矿工节点,你会看到挖出了一个新块!同时,检查中心节点的输出。

NODE 3001

切换到钱包节点并启动:

$ blockchain_go startnode


它会下载最近挖出来的块!

暂停节点并检查余额:

$ blockchain_go getbalance -address WALLET_1
Balance of 'WALLET_1': 9

$ blockchain_go getbalance -address WALLET_2
Balance of 'WALLET_2': 9

$ blockchain_go getbalance -address WALLET_3
Balance of 'WALLET_3': 1

$ blockchain_go getbalance -address WALLET_4
Balance of 'WALLET_4': 1

$ blockchain_go getbalance -address MINER_WALLET
Balance of 'MINER_WALLET': 10


就是这么多了!

总结

这是本系列的最后一篇文章了。我本可以就实现一个真实的 P2P 网络原型继续展开,但是我真的没有这么多时间。我希望本文已经回答了关于比特币技术的一些问题,也给读者提出了一些问题,这些问题你可以自行寻找答案。在比特币技术中还有隐藏着很多有趣的事情!好运!

后记:你可以从实现
addr
消息来开始改进网络,正如比特币网络协议中所描述的(链接可以下方找到)那样。这是一个非常重要的消息,因为它允许节点来互相发现彼此。我已经开始实现了,不过还没有完成!

链接:

Source codes

Bitcoin protocol documentation

Bitcoin network

原文:Building Blockchain in Go. Part 7: Network
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息