您的位置:首页 > 编程语言 > Java开发

浅析Java源码之LinkedList

2017-10-30 02:38 120 查看

  可以骂人吗???辛辛苦苦写了2个多小时搞到凌晨2点,点击保存草稿退回到了登录页面???登录成功草稿没了???喵喵喵???智障!!气!

  很厉害,隔了30分钟,我的登录又失效了,草稿再次回滚,不客气了,***!

  仔细想想,自动保存功能也挺可疑的,根据我半年的资深前端经验判断,内部实现大概是这样:

var id;
  // *core event* window.addEventListener('keyup',function(){
     if(id){clearTimout(id);} id = setTimeout(function(){ // user would be relieved to see this... $('#...').html('本地自动保存于' + (new Date()).toLocaleTimeString() + ',<a href="javascript:void(0);">查看</a>') },1000*Math.random()); });

  如此智能的功能只能用这样优雅的代码实现了吧,社会社会!

  重写。

 

  上篇讲完了ArrayList,这篇继续补完LinkedList的内容。

  首先上一张图来整体看一眼链表的结构(还好图在):

  每一个大方块代表一个节点(Node),内部包含3部分内容:

1、前指针:指向上一个节点,头部元素指向null

2、数据:保存的数据内容

3、后指针:指向下一个节点,尾部元素指向null

  Node是一个类,而且是一个私有+静态+内部类,buff齐全,看一眼实现:

private static class Node<E> {
E item;
Node<E> next;
Node<E> prev;

Node(Node<E> prev, E element, Node<E> next) {
this.item = element;
this.next = next;
this.prev = prev;
}
}

  非常简单暴力,3个变量,一个构造函数,没啥解释的。

   

  老规矩,首先从变量开始看起。

变量

public class LinkedList<E> extends AbstractSequentialList<E> implements
List<E>, Deque<E>, Cloneable, java.io.Serializable {

transient int size = 0;
transient Node<E> first;
transient Node<E> last;
}

  3个变量,size代表当前链表长度,first与last分别指向头部与尾部节点。

 

构造函数

   有两个构造函数:

public LinkedList() {
}
public LinkedList(Collection<? extends E> c) {
this();
addAll(c);
}

  其中无参构造函数啥事也不做,另外一个构造函数允许以指定集合初始化链表。

  这里的addAll只是一个重载版本

public boolean addAll(Collection<? extends E> c) {
return addAll(size, c);
}

  指向真正的addAll,在指定的位置插入链表,初始化的话size为0

public boolean addAll(Collection<? extends E> c) {
return addAll(size, c);
}

  直接看addAll的源码:

public boolean addAll(int index, Collection<? extends E> c) {
checkPositionIndex(index);

Object[] a = c.toArray();
int numNew = a.length;
if (numNew == 0)
return false;

Node<E> pred, succ;
if (index == size) {
succ = null;
pred = last;
} else {
succ = node(index);
pred = succ.prev;
}

for (Object o : a) {
@SuppressWarnings("unchecked") E e = (E) o;
Node<E> newNode = new Node<>(pred, e, null);
if (pred == null)
first = newNode;
else
pred.next = newNode;
pred = newNode;
}

if (succ == null) {
last = pred;
} else {
pred.next = succ;
succ.prev = pred;
}

size += numNew;
modCount++;
return true;
}

  函数比较长,主要分为4步:

1、索引合法性检测

2、将集合拆分为数组并检测长度,如果为0不做操作直接返回false

3、根据插入位置分情况做插入

4、插入操作

 

  首先第一步,比较简单:

private void checkPositionIndex(int index) {
if (!isPositionIndex(index))
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
}
private boolean isPositionIndex(int index) {
return index >= 0 && index <= size;
}

  判断插入索引是否在允许范围内,抛异常。

 

  第二步的插入分两种:

1、尾部插入

2、其他

  先看尾部插入的情况,即size==index:

succ = null;
pred = last;for (Object o : a) {
@SuppressWarnings("unchecked") E e = (E) o;
Node<E> newNode = new Node<>(pred, e, null);
if (pred == null)
first = newNode;
else
pred.next = newNode;
pred = newNode;
}
if (succ == null) {
last = pred;
} else {
pred.next = succ;
succ.prev = pred;
}

  在for循环中,每次都会生成一个新的Node,前指针指向pred(第一个为链表尾元素),数据为类型转换后的集合元素。

  然后将pred的尾指针指向新生成的节点,最后将pred置为该节点。

  依次插入集合元素后,由于是尾部插入,所以last应该是最后插入的元素,即last=pred。

  

  第二种情况是中间插入,详细过程就不写了,心情有点糟糕。

 

方法

  有了addAll,其他的方法就很简单了。

 getFirst/Last

public E getFirst() {
final Node<E> f = first;
if (f == null)
throw new NoSuchElementException();
return f.item;
}

public E getLast() {
final Node<E> l = last;
if (l == null)
throw new NoSuchElementException();
return l.item;
}

  两个get方法分别返回链表的头部与尾部元素,判断是否存在并返回对应的item。

  

remove

public E removeFirst() {
final Node<E> f = first;
if (f == null)
throw new NoSuchElementException();
return unlinkFirst(f);
}

public E removeLast() {
final Node<E> l = last;
if (l == null)
throw new NoSuchElementException();
return unlinkLast(l);
}

  两个删除方法也分别移除头部与尾部元素,方法就看一下unlinkFirst够了。

private E unlinkFirst(Node<E> f) {
final E element = f.item;
final Node<E> next = f.next;
f.item = null;
f.next = null; // help GC
first = next;
if (next == null)
last = null;
else
next.prev = null;
size--;
modCount++;
return element;
}

  这里将头部数据先缓存起来,然后将头部元素移除,将首元素设置为第二个节点,将第二个节点的prev置null。

  如果第二个节点为null,说明链表中没有元素了,于是last也置null。

 

getIndex

  最后看一下获取指定索引的数据

Node<E> node(int index) {
if (index < (size >> 1)) {
Node<E> x = first;
for (int i = 0; i < index; i++)
x = x.next;
return x;
} else {
Node<E> x = last;
for (int i = size - 1; i > index; i--)
x = x.prev;
return x;
}
}

  这里不是单纯的从头遍历,而是做了一个小判断,如果索引在前半截,则从头往后遍历,否则相反。这样就将时间复杂度降低到o(n/2),但是只有双向链表才有。

  剩余的方法都没有什么营养,有兴趣的可以自行研究,画画图简单的很。

 

  最后总结一下ArrayList与LinkedList。

1、两者都是基本的容器,可以按顺序存储元素而且不用担心容器大小

2、搜索上ArrayList由于底层是数组,所以时间复杂度为o(1),而LinkedList为o(2/n)

3、插入元素时,ArrayList需要考虑扩容、变动索引后面元素,而链表最多只需要变动2个节点

4、虽然总体看起来ArrayList更弱,但是链表Node本身的复杂度也不容忽视,如果只为了读取还是尽量用ArrayList。

内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: