您的位置:首页 > 其它

【论文学习】Two-Stream Convolutional Networks for Action Recognition in Videos

2017-10-28 17:50 711 查看

Two-Stream Convolutional Networks for Action Recognition in Videos

原文地址

粗略翻译

摘要:

我们研究了视频中用于训练动作识别的深度卷积网络的架构。这个挑战是捕捉静止帧中的外表和连续帧间中的运动之间的互补信息。我们也志在推广在数据驱动的学习框架中表现最好的手工特征。

一共做出了3个贡献:首先,提出了一个two-stream卷积网络架构,这个架构由时间和空间网络构成。第二,我们验证了,在多帧稠密光流上训练的卷积网络,尽管是有限的训练数据集,但能够实现很好的性能。最后,我们展示出,应用于两个不同动作分类的数据集的多任务学习,可以同时用来增加训练数据集的数量和提高性能。

我们的架构在标准视频动作数据集UCF-101和HMDB-51上训练的,与最先进水平相比还是有竞争力的。它也超出了先前大部分使用深度网络对视频进行分类的方法。

1、介绍

基于视频的人体动作识别是一项具有挑战性的任务,在研究界受到越来越多的关注。与静止图像分类相比,视频中的时间成分为识别提供了一个额外的(且是重要的)线索,根据运动信息可靠的识别出动作。此外,对于单个图像(视频帧)分类,视频提供了自然数据增加(jittering))。

在这项工作中,我们志在扩展深度卷积神经网络(这对于静态图像的表征是最先进的方法)到视频数据中的动作分类上。这个任务最近得到了解决,我们通过将堆放的视频帧作为输入放入网络中,但是结果明显地比最好的手工制作的表征要差得多。我们研究了不同的架构,基于两个分开的识别流(时间和空间 ),最后通过晚融合将它们结合在一起。空间流从静止的视频帧中执行动作识别,而时间流从密集光流形式的运动中用来训练以识别动作。两个流都是用卷积网络来实现的。去耦合时空网络允许我们开发大量的已注释图像数据的可用性,这些数据是通过空间网络在ImageNet数据集上预训练出来的。我们提出的架构与two-streams假设有关,人类视觉皮质包含两条路径:腹侧流(识别目标)和背侧流(识别运动),尽管我们没有进一步调查这个联系。

本文的剩余部分组织如下:在1.1部分,我们回顾了有关使用浅层、深层的架构的动作识别的相关工作。在第2部分,我们介绍了two-stream架构,并且详细介绍了空间卷积网络。在第3部分,介绍了时间卷积网络,并且特别介绍了它如何推广到1.1节中介绍的先前的网络。在第4部分,提出多任务学习框架,使得多个数据集上的训练数据可以容易的组合。实现细节在第5部分给出。在第6部分进行评估,并与最先进水平进行了比较。我们的实验在两个挑战性的数据集(UCF-101和HMDB-51数据集)上都展示出,两个识别流是互补的,并且我们的深度架构比Large-scale video classification with convolutional neural networks这篇论文做的要好,不管是在相对较小的数据集上训练,与浅表示的最先进水平相比也是有竞争力的。

1.1 相关工作

视频识别研究很大程度上由图像识别方法的提高驱动着,这些方法经常应用或扩展于处理视频数据上。视频动作识别的方法类是基于局部时空特征的浅层、高纬度编码的。例如,Learning realistic human actions from movies这篇论文的算法在检测稀疏时空兴趣点,可以描述为使用了局部时空特征:方向梯度直方图(HOG)和光流直方图(FOG)。特征然后编码为Bag Of Features (BoF)表示,它合并了几个时空特征网格(类似于空间金字塔池化),并且结合了SVM分类器。在一项较晚的研究工作中,局部特征的密集采样要比稀疏兴趣点表现的要好。

不是在时空立方体上计算局部视频特征,最先进水平的浅层视频表示利用了密集点轨迹。第一次在Instead of computing local video features over spatio-temporal cuboids论文中介绍的的方法,调整了局部描述符支持域,他们使用了稠密轨迹,利用光流来计算。基于轨迹方法的最好性能是由Motion Boundary Histogram (MBH)实现的,这是一个基于梯度的特征,在光流的水平和竖直方向上分开计算。几个特征的结合展示出可以进一步提高性能。基于轨迹的手工制作的表示最近的改进包括,全局摄像机动作补偿,使用第一向量编码或者是更深的变体。

也有很多方法试图从深度架构上进行视频识别。这些工作的大多数,网络的输入都是一堆连续的视频帧,因此,这些模型被期望能够在第一层学到隐含的时空独立动作特征,这是一个困难的任务。在A biologically inspired system for action recognition这篇论文中,对于视频识别提出了一个HMAX架构,在第一层使用了预定义的时空滤波器。然后,在HMDB: A large video database for human motion recognition论文中,将其与空间KMAX结合,行成一个空间(类似于腹侧)和时间(类似于背侧)识别流。然而,这与我们的工作不同,它的流是手工制作实现的,而且是浅层(3层)HAMX模型。在另外3篇论文中,一个卷积的RBM和ISA被用来无监督的学习时空特征,然后把它推入一个判别模型来进行动作分类。关于视频卷积网络的判别式端到端学习已经在论文3D convolutional neural networks for human action recognition中实现,最近,在论文Large-scale video classification with convolutional neural networks中,比较了几个卷积网络架构来对动作识别,训练是在一个非常大的Sports-1M数据集上实现的,它包含了100多万的YouTube的运动类别的视频。有趣的是,在这篇论文中发现,一个网络,在单个视频帧上操作,与输入是一堆视频帧的网络的性能类似。这可能表明,学习到的时空特征没有很好的捕捉到动作。其学到的表示,在UCF-101数据集上微调后,与原先手工制作的最先进水平的基于轨迹的表示,其正确率降低了20%。

我们的时间流卷积网络中在多帧稠密光流上操作,通过解决位移场(特别是多图像尺度),在一个能量最简化的框架上进行计算。我们使用了High accuracy optical flow estimation based on a

theory for warping中流行的方法,类似于平滑的位移场,对于强度和梯度,基于不变性假设,规定了能量。最近,DeepFlow: Large displacement optical flow with deep matching论文提出了一个图像块匹配方案,这使人联想到深度卷积网络,但不包括学习。

2、关于视频识别的Two-stream架构

视频很自然的被拆解为空间和时间部分。在空间部分,以单个帧上的外观形式,携带了视频描绘的场景和目标信息。在时间部分,以多帧上的运动形式,表达了观察者(摄像机)和目标者的运动。我们因此来设计视频识别架构,如图1所示,将其分为两个流。每一个流都由一个深度卷积网络来实现,最后它们使用晚融合的softmax来结合。我们考虑了两种融合方法:求平均,并在多类线性SVM上训练,使用L2正则化的sofamax计算特征分数。



图1: 视频识别的Two-stream架构

空间流卷积网络在单个视频帧上操作,有效地表现了静止图像中的动作识别。其自身静态外表是一个很有用的线索,因为一些动作很明显地与特定的目标有联系。事实上,如第6部分所述,静态帧(空间识别流)的动作识别相对其自身是有竞争力的。由于空间流卷积网络本质上是一个图像分类架构,我们可以依赖于最近的ImageNet classification with deep convolutional neural networks论文中大型图像识别方法,在大型图像分类数据集上预训练网络。细节在第5部分给出,接下来我们描述一个时间流卷积网络,其采用了运动信息,明显的提高了准确率。

3、光流卷积网络

在这一部分,我们描述一个卷积网络模型,在我们的架构(见第2部分)中行成了一个时间识别流。不同于1.1中回顾的卷积网络模型,我们模型的输入是由几个相邻帧之间叠加的光流位移场。这个输入准确地描述了视频帧之间的运动信息,这使得识别更加容易,并且网络不需要暗中估计运动。我们考虑了几个基于光流输入的变体,如下描述所示。



图2: 光流.(a)(b):连续视频帧对,用青色矩阵画出移动手的区域。(c):在大部分区域的密集光流的特写。(d):位移矢量场(强度高相当于正值,强度低相当于负值)的水平分量dx。(e):垂直分量dy。注意d和e是如何高亮出移动的手和弓。卷积网络输出包含了多流(3.1部分)。

3.1 卷积网络的输入配置

光流叠加. 一个密集光流可以看做是在连续的帧t和帧t+1之间的一个位移矢量场dt的集合。通过dt(u,v),我们表示在帧t的(u,v)位置的位移矢量,他表示移动到在下一个帧t+1相对应的点。矢量场的水平和垂直部分是dtx和dty,可以视为图像的通道(如图2所示),在卷积网络中可以用来识别。为了表示一系列帧之间的运动,我们叠加了L个连续帧的流通道dtxy,行成了2L的输入通道。更正式的说,设定w和h是视频的宽和高,对于任意帧τ,卷积网络输入容量

将被如下构建:



对于任意点(u.v),通道

,通过一系列L帧(如图3左图所示),编码了这个点的动作信息。

轨迹叠加. 受基于轨迹描述子的启发,一个可选的运动表示代替了光流,用流沿着运动轨迹,在几个帧的相同位置采样。在这个情形下,与帧τ对应的输入容量Ιτ,采取下列形式:



其中pk是沿着轨迹的第k个点,开始于帧τ的(u,v)位置,并且用以下递归方式定义:



比较于输入容量表示1,其通道Ιτ(u,v,c)存储了(u,v)位置的位移矢量,而在输入容量2中,则存储了沿着轨迹(如图3右图所示)在位置pk抽样的矢量。



图3: 卷积网络从多帧光流中的输入来历。左:光流叠加在连续多帧的同一个位置的采样位置矢量。右:轨迹叠加沿着轨迹采样矢量。帧和与之相对应的位移矢量都用相同的颜色表示。

双向光流. 光流表示1和2处理了前向光流,也就是帧t的位移场dt指定了在下一帧t+1处像素的位置。自然地扩展到双向光流,通过在相反的位置计算一个额外的位移场集合来获得。我们接着构建了输入容量Ιτ,通过叠加帧τ到帧τ+L/2之间共L/2个前向流和帧τ-L/2到帧τ至今的L/2个后向流。输入Ιτ因此与之前的通道(2L)有相同的数量。流可以使用方法1和方法2中其中任一个来表示。

均流差. 这有利于处理中心为0的网络输入,允许模型更好的处理纠正非线性。在我们的案例中,位移矢量场分量可以同时具有正值和负值,自然地集中在各种各样的运动中,一个方向上的运动很有可能是相反位置上的运动。然而,对于给定的帧对,它们之间的光流可以由特定的位移来控制,例如,通过摄像机的移动。摄像机运动补偿的重要性已经在先前的论文中明显地提出过,从密集光流中估计并减去全局运动分量。在我们的案例中,我们考虑一个更简单的方法:在每一个位移场d中都减去它的均值矢量。

架构. 以上我们描述了不同的方法来结合多种光流位移场到单个容量

中。考虑到卷积网络要求固定尺寸的输入,我们从Ιτ中采样了224x224x2L个副容量,并将其传递给网络作为输入。隐藏层的配置大部分保留了空间卷积中使用的配置,如图1所示。测试也类似于空间卷积网络,细节在第5部分给出。

3.2 时间卷积网络架构与先前表示的关系

在这一部分,我们将我们的时间卷积网络架构放在1.1部分回顾的先前技术的环境下,描述出视频表示的联系。基于特征编码的方法结合了几个时空局部特征。这种特征是通过光流计算的,并由我们的时间卷积网络来推广。事实上,HOF和MBH局部描述子是基于光流方向或者梯度的直方图,可以通过位移场的输出由单个卷积层(包含对方向敏感的滤波器)来获得,接下来是正则化和池化层。运动学上的特征(散度、旋度和裁剪)也可以通过光流梯度来计算,同样,也可以通过卷积模型来捕获。最后,轨迹特征通过叠加沿着轨迹的位移矢量计算获得,相当于轨迹叠加。在3.3部分,我们可视化了从时间网络第一层学到的卷积滤波器。这提供了进一步的证据,我们的表示可以泛化到手动制作的特征。

就深度网络而言,HMDB: A large video database for human motion recognition论文中一个two-stream视频识别架构包含了两个HMAX模型,这是手工制作的,并且比我们的判别式训练模型的深度要浅一点。这可以看多是HMAX一个可学习的泛化。另外两篇论文中,并没有分离时间和空间识别流,依赖于从数据中学到的对动作敏感的滤波器。在我们的案例中,动作明确的使用光流位移场来表示,基于亮度不变性的假设和光的平滑性来计算的。这种假设合并到卷积网络框架中,能够促进端到端基于方法的卷积网络的性能,这是未来研究一个有趣的方向。

3.3 学习卷积滤波器的可视化



图4: 在10个叠加光流学到的第一层卷积滤波器。这个可视化分为96列,20行:每一列相当于一个滤波器,每一行相对于一个输入通道。

在图4中,我们可视化了从时间卷积网络第一层学到的卷积滤波器,并在UCF-101数据集上进行训练。96个滤波器都含有7x7像素的空间感受野,横跨了20个输入通道,与10个叠加的光流位移场d的水平分量dx和垂直分量dy相对应。

我们可以看出,一些滤波器计算了光流的空间导数,捕捉了动作时如何随着图像位置的改变,这可以推广到基于手工制作描述子的衍生物(例如,MBH)。其他滤波器计算了时间衍生物,捕捉了一段时间内动作的变化。

4、多任务学习

不同于空间流卷积网络,它可以在大量静止图像数据集(例如ImageNet数据集)上进行预训练,时间卷积网络需要在视频数据集上训练,对于视频动作识别可用的数据集非常少。在我们的实验(第6部分)中,在UCF-101和HMDB-51数据集上训练,各自自由9500和3700个视频。为了减少过拟合,考虑将两个数据集结合成一个,然而并不是直接地在类别之间取交集。一个选项(在我们稍后验证时)是从类别中添加没有出现在原始数据集的图像。然而,这要求对每个类别进行人工检索,并且限制了可训练数据的数量。

一个更强的结合数据集的方法是基于多任务学习。它志在学习一个(视频)表示,不仅可以应用于这个问题(例如HMDB-51分类),也适用于其他任务(如UCF-101分类)。额外的任务,例如正则化,也考虑到了开发额外的训练数据。在我们的案例中,卷积网络架构进行了修改,在最后一层全连接层的前面有两个softmax分类层,一个softmax计算HMDB-51分类的分数,另一个计算UCF-101的分数。每一层都配有自己的损失函数,只在各自数据集的视频数据上操作。总体的训练损失由单个任务的损失和计算得出,通过后向传播计算网络权重派生物。

5、实现细节

卷积网络配置. 我们的空间和时间卷积网络的每一层配置如图1所示。它相当于Return of the devil in the details: Delving deep into convolutional nets论文中的CNN-M-2048架构,类似于Visualizing and understanding convolutional networks论文中的网络。隐藏层使用了RELU激励函数;池化层使用最大池化,窗口为3X3,步长为2;局部反应归一化使用如ImageNet classification with deep convolutional neural networks论文中的设置。在空间和时间卷积网络中唯一不同的配置是我们去除了时间网络中第二次归一化,以便减少内存消耗。

训练. 训练流程可以视为是对ImageNet classification with deep convolutional neural networks相对于视频帧的一个改动,并且对时间和空间网络都是相同的。使用mini-batch随机梯度下降(其动量为0.9)学习网络权重。在每个迭代中,一个mini-batch含有256个样本,通过采样256个训练视频(对每个类别都一致)获得,其中的单个帧都是随机选择的。在空间网络训练时,从选择的帧中随机截取224x224的子图;然后对其进行随机水平翻转和RGB抖动。视频事先经过调整,因此帧最小的边等于256。我们与ImageNet classification with deep convolutional neural networks不同,子图是从整个帧中采样的,而不是选取了256x256的中心。在时间网络训练时,我们对在第3部分描述的每一个选择的训练帧,计算了光流容量Ι。从这个容量中,随机裁剪和翻转一个固定尺寸224x224x2L的输入。学习速率初始化为0.01,然后根据固定的顺序减少,在所有的训练集上都保持相同。也就是说,当从头训练一个卷积网络时,在5万次迭代后速率给变为0.001,在7万次迭代后速率变为0.0001,最终在8万次迭代后训练停止。在微调阶段,在14000次迭代后速率变为0.001,在2万次迭代后训练停止。

测试. 在测试时,对于给定视频,我们采样了固定数量(在我们的实验中是25)的帧,这些帧之间有相同的实践间距。对于其中的每个帧,通过裁剪和翻转帧的四个角和中心,我们获得了卷积网络的10个输入。对于整个视频的类别分数,通过计算每个帧和翻转后的帧的分数平均来得到。

在ImageNet ILSVRC-2012上预训练. 当预训练空间卷积网络时,我们使用与向前描述同样的数据增加方式(裁剪、翻转、RGB抖动)。在ILSVRC-2012验证数据集上获得了13.5%的top5误差,在Visualizing and understanding convolutional networks论文中类似的网络得到了16%的误差。我们相信改进的主要原因是卷积网络的采样输入是来自于整个图像,而不只是图像的中心。

多GPU训练. 我们是在公共工具CAFFE上实现的,但是包含了一些重大的修改,包括在多个GPU上平行训练,而不是在一个系统下训练。我们利用数据平行性,将每个SGD批处理为多个GPU。训练单个时间卷积网络,在一个有4个NVIDIA显卡的系统是哪个要花费1天,这比单GPU的训练快了3.2倍。

光流. 使用opencv工具中现成的GPU来实现计算。尽管计算时间很快(每个帧对0.06秒),但在实际运行时仍然是一个瓶颈,因此我们在训练前提前计算了光流。为了避免以浮点数存储位移场,光流的水平和垂直分量线性扩展到[0,255]的范围,并使用了JPEG进行了压缩(在解压后,光流恢复为原先的范围)。这将UCF-101数据集光流的大小从1.5TB减少到了27GB。

6、验证

数据集和验证协议. 验证是在UCF-101和HMDB-51的动作识别benchmarks进行的,它们是最大的可用带注释的视频数据集。UCF-101包含了13000个视频(每个视频平均有180帧),被分为101个类别。HMDB-51数据集包含了6800个视频,共51个类别。两个数据集的验证协议是相同的:组织者将数据集分成了3个分片,训练数据、测试数据和计算平均分类正确度的性能的分片。每一个UCF-101分片都包含了9500个训练视频;一个HMDB-51分片包含3700个训练视频。我们开始在UCF-101数据集的第一个分片上比较了不同的架构。对于与先进水平的比较,我们遵循标准的验证协议,各自在UCF-101和HMDB-51的3个分片上计算了平均准确度。

空间卷积网络. 首先,我们测量了空间流卷积网络的准确性。考虑以下3个情境:(1)在UCF-101数据集上从头训练。(2)在ILSVRC-2012预训练后,在UCF-101上进行微调。(3)保持预训练网络固定,只训练最后一层(分类)。对于每一个设置,我们都通过dropout正则化率0.5到0.9进行了实验。结果展现在表1(a)中,很明显,单独的在UCF-101数据集上训练导致了过拟合(即使是很高的dropout),并且要差于在ILSVRC-2012数据集上的预训练。有趣的是,对整个网络的微调要比只训练最后一层稍微好那么一点。在下面的实验中,我们选择只训练预训练卷积网络前的最后一层。

表1: 在UCF-101数据集(分片1)上单个卷积网络的准确度。



时间卷积网络. 已经验证了时间卷积网络的变体,我们现在转向时间网络架构,评定了如3.1部分描述的输入配置的影响。特别地,我们计算了这些效果:使用多个(L={5,10})叠加光流;轨迹叠加;平均位移差;使用双向光流。架构在UCF-101数据集上从头训练,因此我们使用了dropout正则化率0.9来提高泛化能力,结果在表1(b)中显示。首先,我们可以推断,在输入中叠加多个(L>1)位移场是非常有效的,它提供给网络长远的动作信息,比一个帧对(L=1)的光流更有区别性。输入流的数量从5提高到10导致了一个较小的提高,因此我们在接下来的实验中将L固定为10。第二,我们发现平均消去是有用的,它减少了帧间的全局动作的影响,我们在接下来的实验中默认使用。不同叠加技术上的区别是较小的;结果是光流叠加比轨迹叠加的效果要好,使用双向流要比使用单向前向流好一点点。最后,我们注意到,时间卷积网络要比空间卷积网络(表1a)表现的要好,这确认了在动作识别中运动信息的重要性。

我们也实现了慢融合架构,这相当于运用了一组RGB帧到卷积网络中(在我们的实验中是11帧)。当从头训练UCF-101数据集时,实现了56.4%的准确率,这比从头训练单帧架构要好(52.3%),这与在光流上从头训练要差的远。这展示了多帧信息的重要性,同样重要的是以一种合理的方式呈现给卷积网络。

时间卷积网络的多任务学习. 由于训练集较小,在UCF-101数据集上训练时间卷积网络是比较有挑战性的。一个更大的挑战是在HMDB-51数据集上训练卷积网络,每个训练片比UCF-101小了2.6倍。这里,我们验证了不同的选项,来有效地提高HMDB-51训练集的大小:(1)在UCF-101预训练后微调一个时间网络;(2)从UCF-101中添加78个类别,通过手工筛选,因此与原先的HMDB-51类别没有交集;(3)使用多任务规划(第4部分所述)来学习视频表示,在UCF-101和HMDB-51分类任务上共享。结果展示在表2中。正如期待的,使用全部的(所有分片结合)UCF-101数据来训练(不管是借用图像还是隐式地预训练)是有用的。多任务学习表现的最好,因为它允许训练过程中采用了所有可用的训练数据。

表2: 在HMDB-51数据集(分片1和额外的训练数据)上时间卷积网络的准确性。



我们也在UCF-101数据集上进行了多任务训练,通过在所有的HMDB-51数据(所有的分片结合)和UCF-101数据上(单个分片)训练分类。在UCF-101的第一个分片上,准确率为81.5%,之前同样的设置实现了81.0%,但是没有额外的HMDB分类任务(表1b)。

Two-stream卷积网络. 这里我们验证了完整的two-stream模型,其结合了两个识别流。结合网络的一个方法是,在两种网络的6层或7层后,训练一个全连接层共同的叠加。然而在我们的情境下这样是不可行的,会导致过拟合。因此,我们融合了softmax分数,使用或平均了一个线性SVM。从表3中我们可以得出结论:(1)时间和空间识别流是互补的,他们的融合明显的提高了彼此(时间网络上提高了6%,空间网络上提高了14%)。(2)基于SVM的softmax计分融合要比平均融合做的要好。(3)使用双向流对于卷积网络的情况没有益处。(4)使用多任务训练的时间卷积网络要比单独或者是融合一个空间网络的性能都要好。

表3: 在UCF-101(分片1)上训练的Two-stream卷积网络的准确性。



与最先进水平的对比. 通过在UCF-101和HMDB-51的3个分片上进行了与最先进水平的比较,总结了实验的验证。我们使用了一个在ILSVRC预训练的空间网络,其最后一层是在UCF或HMDB上训练的。时间网络是在UCF或HMDB上使用多任务训练的,输入是使用平均消去的单向光流叠加计算的。两个网络的softmax分数会使用平均或者SVM来计算。在表4中可以看到,我们单独的的空间和时间网络都比另外两篇论文中的深度网络要大幅度提高很多。两个网络的结合进一步提高了结果(与上面在单个分片上的结果一致),堪比最近最先进水平的手工制作模型。

表4: 在UCF-101和HMDB-51上的平均准确度(全部3个分片)。



对UCF-101分类的混合矩阵和每个类的调用. 在图5中,我们展示了使用双流的UCF-101分类的混合矩阵,在第一个分片数据集上实现了87%的准确度(表3的最后一行),我们也在图6中可视化了与之对应每个类别的查全率。



图5: 双流模型在UCF-101第一个分片上的混合矩阵。

.



图6: 双流模型在UCF-101第一个分片上的每个类别的查全率。

与Hammering类别对应的最差的类别查全率,与HeadMassage和BrushingTeeth类别混淆了。我们发现这主要有两个原因。首先,空间卷积网络混淆了Hammering和HeadMassage类,这可能是因为人脸在两个类别中都明显的存在所造成的。其次,时间卷积网络混淆了Hammering和BrushingTeeth类,这两个动作都包含了循环的运动模式(手的上下移动)。

7、结论和改进方向

我们提出一个深度视频识别模型,其性能具有竞争性,它分别由基于卷积网络的时间和空间识别流组成。目前,在光流上训练时间卷积网络要比在原始连续帧上训练要好的多。后者或许更具有挑战性,或许要求架构改变(比如,与DeepFlow: Large displacement optical flow with deep matching论文的深度匹配方法结合)。尽管使用光流作为输入,我们的时间模型并不需要大量的手工制作,因为光流可以使用基于通用的不变性假设和平滑性来计算得到。

正如我们所展示的,额外的训练数据对我们的时间卷积网络是有益的,因此我们计划在大型数据集上训练它,例如Large-scale video classification with convolutional neural networks论文最近收集的数据集。然而,由于这是一个庞大的数据集(TB以上)所以是一个巨大的挑战。

我们的网络仍然错过了一些最先进水平的浅层表示的有用材料。最突出的一个就是,以轨迹为中心,在时空管道上的局部特征池化。即使是输入2沿着轨迹捕捉了光流,在我们的网络中空间池化并没有将轨迹考虑在内。另一个潜在的改进可能是摄像机运动的明确处理,在我们的实验中使用了平均位移消去法进行了补偿。
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: 
相关文章推荐