您的位置:首页 > 编程语言 > PHP开发

通过NTP协议进行时间同步

2017-10-23 11:16 399 查看
NTP(Network Time Protocol,网络时间协议)是由RFC 1305定义的时间同步协议,用来在分布式时间服务器和客户端之间进行时间同步。NTP基于UDP报文进行传输,使用的UDP端口号为123。

使用NTP的目的是对网络内所有具有时钟的设备进行时钟同步,使网络内所有设备的时钟保持一致,从而使设备能够提供基于统一时间的多种应用。

对于运行NTP的本地系统,既可以接收来自其他时钟源的同步,又可以作为时钟源同步其他的时钟,并且可以和其他设备互相同步。

NTP工作原理

NTP的基本工作原理如图所示。Device A和Device B通过网络相连,它们都有自己独立的系统时钟,需要通过NTP实现各自系统时钟的自动同步。为便于理解,作如下假设:

在Device A和Device B的系统时钟同步之前,Device A的时钟设定为10:00:00am,Device B的时钟设定为11:00:00am。

 Device B作为NTP时间服务器,即Device A将使自己的时钟与Device B的时钟同步。

   NTP报文在Device A和Device B之间单向传输所需要的时间为1秒。



       系统时钟同步的工作过程如下:

   Device A发送一个NTP报文给Device B,该报文带有它离开Device A时的时间戳,该时间戳为10:00:00am(T1)。

  当此NTP报文到达Device B时,Device B加上自己的时间戳,该时间戳为11:00:01am(T2)。

  当此NTP报文离开Device B时,Device B再加上自己的时间戳,该时间戳为11:00:02am(T3)。

  当Device A接收到该响应报文时,Device A的本地时间为10:00:03am(T4)。

至此,Device A已经拥有足够的信息来计算两个重要的参数:

 NTP报文的往返时延Delay=(T4-T1)-(T3-T2)=2秒。

  Device A相对Device B的时间差offset=((T2-T1)+(T3-T4))/2=1小时。

这样,Device A就能够根据这些信息来设定自己的时钟,使之与Device B的时钟同步。

NTP的报文格式

NTP有两种不同类型的报文,一种是时钟同步报文,另一种是控制报文。控制报文仅用于需要网络管理的场合,它对于时钟同步功能来说并不是必需的,这里不做介绍。



 

主要字段的解释如下:

l              LI(Leap Indicator):长度为2比特,值为“11”时表示告警状态,时钟未被同步。为其他值时NTP本身不做处理。

l              VN(Version Number):长度为3比特,表示NTP的版本号,目前的最新版本为3。

l              Mode:长度为3比特,表示NTP的工作模式。不同的值所表示的含义分别是:0未定义、1表示主动对等体模式、2表示被动对等体模式、3表示客户模式、4表示服务器模式、5表示广播模式或组播模式、6表示此报文为NTP控制报文、7预留给内部使用。

l              Stratum:系统时钟的层数,取值范围为1~16,它定义了时钟的准确度。层数为1的时钟准确度最高,准确度从1到16依次递减,层数为16的时钟处于未同步状态,不能作为参考时钟。

l              Poll:轮询时间,即两个连续NTP报文之间的时间间隔。

l              Precision:系统时钟的精度。

l              Root Delay:本地到主参考时钟源的往返时间。

l              Root Dispersion:系统时钟相对于主参考时钟的最大误差。

l              Reference Identifier:参考时钟源的标识。

l              Reference Timestamp:系统时钟最后一次被设定或更新的时间。

l              Originate Timestamp:NTP请求报文离开发送端时发送端的本地时间。

l              Receive Timestamp:NTP请求报文到达接收端时接收端的本地时间。

l              Transmit Timestamp:应答报文离开应答者时应答者的本地时间。

l              Authenticator:验证信息。

NTP的工作模式

 设备可以采用多种NTP工作模式进行时间同步:

             客户端/服务器模式

             对等体模式

            广播模式

            组播模式

用户可以根据需要选择合适的工作模式。在不能确定服务器或对等体IP地址、网络中需要同步的设备很多等情况下,可以通过广播或组播模式实现时钟同步;客户端/服务器和对等体模式中,设备从指定的服务器或对等体获得时钟同步,增加了时钟的可靠性。
1. 客户端/服务器模式






在客户端/服务器模式中,客户端向服务器发送时钟同步报文,报文中的Mode字段设置为3(客户模式)。服务器端收到报文后会自动工作在服务器模式,并发送应答报文,报文中的Mode字段设置为4(服务器模式)。客户端收到应答报文后,进行时钟过滤和选择,并同步到优选的服务器。

在该模式下,客户端能同步到服务器,而服务器无法同步到客户端。

2. 对等体模式



 在对等体模式中,主动对等体和被动对等体之间首先交互Mode字段为3(客户端模式)和4(服务器模式)的NTP报文。之后,主动对等体向被动对等体发送时钟同步报文,报文中的Mode字段设置为1(主动对等体),被动对等体收到报文后自动工作在被动对等体模式,并发送应答报文,报文中的Mode字段设置为2(被动对等体)。经过报文的交互,对等体模式建立起来。主动对等体和被动对等体可以互相同步。如果双方的时钟都已经同步,则以层数小的时钟为准

3. 广播模式






在广播模式中,服务器端周期性地向广播地址255.255.255.255发送时钟同步报文,报文中的Mode字段设置为5(广播模式)。客户端侦听来自服务器的广播报文。当客户端接收到第一个广播报文后,客户端与服务器交互Mode字段为3(客户模式)和4(服务器模式)的NTP报文,以获得客户端与服务器间的网络延迟。之后,客户端就进入广播客户端模式,继续侦听广播报文的到来,根据到来的广播报文对系统时钟进行同步。

4. 组播模式






在组播模式中,服务器端周期性地向用户配置的组播地址(若用户没有配置组播地址,则使用默认的NTP组播地址224.0.1.1)发送时钟同步报文,报文中的Mode字段设置为5(组播模式)。客户端侦听来自服务器的组播报文。当客户端接收到第一个组播报文后,客户端与服务器交互Mode字段为3(客户模式)和4(服务器模式)的NTP报文,以获得客户端与服务器间的网络延迟。之后,客户端就进入组播客户模式,继续侦听组播报文的到来,根据到来的组播报文对系统时钟进行同步。

NTP时间同步的实现

有了上述基础知识后,我们就可以实现自己的时间同步工具了,下文附了一个简单的C#的实现。
    class NptClient
    {
        IPAddress ntpServer;
        public NptClient(IPAddress ntpServer)
        {
            this.ntpServer = ntpServer;
        }
 
        public DateTime GetServerTime()
        {
            var startTime = DateTime.Now;
            var ntpTime = NTPData.Test(ntpServer);
            var recvTime = DateTime.Now;
 
            var offset = ((ntpTime.ReceiveTimestamp - startTime) + (ntpTime.TransmitTimestamp - recvTime));
            offset = offset.Subtract(TimeSpan.FromSeconds(offset.TotalSeconds / 2));
 
            return recvTime + offset;
        }
    }
 
    [StructLayout(LayoutKind.Sequential)]
    class NTPData
    {
        byte header = 0;
        byte Stratum = 1;           //系统时钟的层数,取值范围为1~16,它定义了时钟的准确度
        byte Poll = 1;              //轮询时间,即两个连续NTP报文之间的时间间隔
        byte Precision = 1;         //系统时钟的精度
        BigEndianUInt32 rootDelay;
        BigEndianUInt32 referenceIdentifier;
        BigEndianUInt32 ReferenceIdentifier;
 
        public NtpTime ReferenceTimestamp { get; private set;
}
        public NtpTime OriginateTimestamp { get; private set;
}
        public NtpTime ReceiveTimestamp { get; private set;
}
        public NtpTime TransmitTimestamp { get; private set;
}
 
        public NTPData()
        {
            this.header = GetHeader();
        }
 
        byte GetHeader()
        {
            var LI = "00";
            var VN = "011";         //NTP的版本号为3
            var Mode = "011";       //客户模式
 
            return Convert.ToByte(LI + VN + Mode, 2);
        }
 
        public static NTPData Test(IPAddress ntpServer)
        {
            var data = MarshalExtend.GetData(new NTPData());
 
            var udp = new System.Net.Sockets.UdpClient();
            udp.Send(data, data.Length, new IPEndPoint(ntpServer, 123));
 
            var ep = new IPEndPoint(IPAddress.Any, 0);
            var replyData = udp.Receive(ref ep);
 
            return MarshalExtend.GetStruct<NTPData>(replyData, replyData.Length);
        }
    }
 
    [StructLayout(LayoutKind.Sequential)]
    class NtpTime
    {
        BigEndianUInt32 seconds;
        BigEndianUInt32 fraction;
 
        static readonly DateTime baseTime = new DateTime(1900,
1, 1, 0, 0, 0, DateTimeKind.Utc);
 
        public static implicit operator DateTime(NtpTime time)
        {
            /* rfc1305的ntp时间中,时间是用64bit来表示的,记录的是1900年后的秒数(utc格式)
             * 高32位是整数部分,低32位是小数部分 */
 
            var milliseconds = (int)(((double)time.fraction / uint.MaxValue) * 1000);
            return baseTime.AddSeconds(time.seconds).AddMilliseconds(milliseconds).ToLocalTime();
        }
 
        public override string ToString()
        {
            return ((DateTime)this).ToString("o");
        }
    }
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签:  NTP