您的位置:首页 > 理论基础 > 计算机网络

神经网络提升mnist识别率

2017-10-13 23:27 120 查看
跟着tensorflow入门学习构建一个神经网络提升mnist识别率,最终提升到接近1的正确率了,基本参考网站代码,自己打上去顺便理解下过程,不懂得地方做了中文标注

# -*- coding:gbk -*-
import input_data
import tensorflow as tf

mnist=input_data.read_data_sets("MNIST_data/", one_hot=True)
#添加x作为占位符
x=tf.placeholder("float", [None, 784])
#正确结果占位符
y_=tf.placeholder("float", [None,10])

#设置权重函数
def weight_variable(shape):
#tf.truncated_normal(shape, mean, stddev) :shape表示生成张量的维度,mean是均值,stddev是标准差。这个函数产生正态分布,均值和标准差自己设定
#权重在初始化时应该加入少量的噪声来打破对称性以及避免0梯度
initial=tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)

#设置偏置函数
#由于我们使用的是ReLU神经元,因此比较好的做法是用一个较小的正数来初始化偏置项,以避免神经元节点输出恒为0的问题(dead neurons)
def bias_variable(shape):
initial=tf.constant(0.1, shape=shape)
return tf.Variable(initial)

#卷积函数
#卷积使用1步长,0边距的模板,池化用2x2的模板
def conv2d(x, W):
#x:待卷积的矩阵具有[batch, in_height, in_width, in_channels]这样的shape
#w:卷积核具有[filter_height, filter_width, in_channels, out_channels]这样的shape
#strides:卷积时在图像每一维的步长,这是一个一维的向量,长度4
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')

#池化函数
#和卷积基本相同
def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],strides=[1, 2, 2, 1], padding='SAME')

#卷积在每个5x5的patch中算出32个特征。
#卷积的权重张量形状是[5, 5, 1, 32],前两个维度是patch的大小,
#接着是输入的通道数目,最后是输出的通道数目
W_conv1=weight_variable([5, 5, 1, 32])
b_conv1=bias_variable([32])

#shape:[batch, in_height, in_width, in_channels]
x_image=tf.reshape(x, [-1,28,28,1])

#卷积+偏置,然后给relu激活函数,最后激活函数返回值池化
h_conv1=tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1=max_pool_2x2(h_conv1)

#第二层卷积,池化
W_conv2=weight_variable([5, 5, 32, 64])
b_conv2=bias_variable([64])
h_conv2=tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2=max_pool_2x2(h_conv2)

#全连接层
W_fc1=weight_variable([7 * 7 * 64, 1024])
b_fc1=bias_variable([1024])
h_pool2_flat=tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1=tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)

#dropout方法减轻过拟合问题
keep_prob=tf.placeholder("float")
h_fc1_drop=tf.nn.dropout(h_fc1, keep_prob)

#softmax层
W_fc2=weight_variable([1024, 10])
b_fc2=bias_variable([10])
y_conv=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)

#训练和评估模型
cross_entropy=-tf.reduce_sum(y_*tf.log(y_conv))
train_step=tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction=tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))
accuracy=tf.reduce_mean(tf.cast(correct_prediction, "float"))
sess = tf.InteractiveSession()
sess.run(tf.initialize_all_variables())
for i in range(2000):
batch=mnist.train.next_batch(50)
if i%100 == 0:
train_accuracy=accuracy.eval(feed_dict={x:batch[0], y_: batch[1], keep_prob: 1.0})
print("step %d, training accuracy %g"%(i, train_accuracy))
train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})

print("test accuracy %g"%accuracy.eval(feed_dict={x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: