您的位置:首页 > 编程语言

LeNet-5模型详解及其TensorFlow代码实现

2017-08-07 18:08 971 查看
本文先分析了LeNet-5模型的结构,然后基于LeNet-5模型写了TensorFlow代码实现mnist数字识别,代码部分进行了详细注解,目前也在学习阶段,有错误欢迎指出,大家一起学习。

LeNet-5模型结构图如下图:



LeNet-5模型总共有7层。

第一层:卷积层

第一层卷积层的输入为原始的图像,原始图像的尺寸为32×32×1。卷积层的过滤器尺寸为5×5,深度为6,不使用全0补充,步长为1。由于没有使用全0补充,所以这一层的输出的尺寸为32-5+1=28,深度为6。这一个卷积层总共有5×5×1×6+6=156个参数,其中6为偏置项参数个数,卷积层的参数个数只和过滤器的尺寸,深度以及当前层节点矩阵的深度有关。因为下一层节点矩阵有28×28×6=4704个节点,每个节点和5×5=25个当前层节点相连,所以本层卷积层总共有4704×(25+1)=122304个连接。

第二层:池化层

这一层的输入为第一层的输出,是一个28×28×6的节点矩阵。本层采用的过滤器大小为2×2,步长为2,所以本层的输出矩阵大小为14×14×6。

第三层:卷积层

本层的输入矩阵大小为14×14×6,采用的过滤器大小为5×5,深度为16,不使用全0补充,步长为1。这一层的输出的尺寸为14-5+1=10,深度为16,即输出矩阵大小为10×10×16。本层参数有5×5×6×16+16=2416个,连接有10×10×16×(5×5+1)=41600个。

第四层:池化层

本层的输入矩阵大小为10×10×16,采用的过滤器大小为2×2,步长为2,本层的输出矩阵大小为5×5×16。

第五层:全连接层

本层的输入矩阵大小为5×5×16,在LeNet-5模型的论文中将这一层称为卷积层,但是因为过滤器的大小就是5×5,所以和全连接层没有区别,这里直接看成全连接层。本层输入为5×5×16矩阵,将其拉直为一个长度为5×5×16的向量,即将一个三维矩阵拉直到一维空间以向量的形式表示,这样才可以进入全连接层进行训练。本层的输出节点个数为120,所以总共有5×5×16×120+120=48120个参数。

第六层:全连接层

本层的输入节点个数为120个,输出节点个数为84个,总共有120×84+84=10164个参数。

第七层:全连接层

本层的输入节点个数为84个,输出节点个数为10个,总共有84×10+10=850个参数。

接下来以TensorFlow代码展示一个基于LeNet-5模型的mnist数字识别代码。

mnist数据集png图片格式下载链接:链接:http://pan.baidu.com/s/1eRG6TqU 密码:uf4m

tensorflow版本:1.2.1

代码如下:

from skimage import io,transform
import os
import glob
import numpy as np
import tensorflow as tf

#将所有的图片重新设置尺寸为32*32
w = 32
h = 32
c = 1

#mnist数据集中训练数据和测试数据保存地址
train_path = "E:/data/datasets/mnist/train/"
test_path = "E:/data/datasets/mnist/test/"

#读取图片及其标签函数
def read_image(path):
label_dir = [path+x for x in os.listdir(path) if os.path.isdir(path+x)]
images = []
labels = []
for index,folder in enumerate(label_dir):
for img in glob.glob(folder+'/*.png'):
print("reading the image:%s"%img)
image = io.imread(img)
image = transform.resize(image,(w,h,c))
images.append(image)
labels.append(index)
return np.asarray(images,dtype=np.float32),np.asarray(labels,dtype=np.int32)

#读取训练数据及测试数据
train_data,train_label = read_image(train_path)
test_data,test_label = read_image(test_path)

#打乱训练数据及测试数据
train_image_num = len(train_data)
train_image_index = np.arange(train_image_num)
np.random.shuffle(train_image_index)
train_data = train_data[train_image_index]
train_label = train_label[train_image_index]

test_image_num = len(test_data)
test_image_index = np.arange(test_image_num)
np.random.shuffle(test_image_index)
test_data = test_data[test_image_index]
test_label = test_label[test_image_index]

#搭建CNN
x = tf.placeholder(tf.float32,[None,w,h,c],name='x')
y_ = tf.placeholder(tf.int32,[None],name='y_')

def inference(input_tensor,train,regularizer):

#第一层:卷积层,过滤器的尺寸为5×5,深度为6,不使用全0补充,步长为1。
#尺寸变化:32×32×1->28×28×6
with tf.variable_scope('layer1-conv1'):
conv1_weights = tf.get_variable('weight',[5,5,c,6],initializer=tf.truncated_normal_initializer(stddev=0.1))
conv1_biases = tf.get_variable('bias',[6],initializer=tf.constant_initializer(0.0))
conv1 = tf.nn.conv2d(input_tensor,conv1_weights,strides=[1,1,1,1],padding='VALID')
relu1 = tf.nn.relu(tf.nn.bias_add(conv1,conv1_biases))

#第二层:池化层,过滤器的尺寸为2×2,使用全0补充,步长为2。
#尺寸变化:28×28×6->14×14×6
with tf.name_scope('layer2-pool1'):
pool1 = tf.nn.max_pool(relu1,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')

#第三层:卷积层,过滤器的尺寸为5×5,深度为16,不使用全0补充,步长为1。
#尺寸变化:14×14×6->10×10×16
with tf.variable_scope('layer3-conv2'):
conv2_weights = tf.get_variable('weight',[5,5,6,16],initializer=tf.truncated_normal_initializer(stddev=0.1))
conv2_biases = tf.get_variable('bias',[16],initializer=tf.constant_initializer(0.0))
conv2 = tf.nn.conv2d(pool1,conv2_weights,strides=[1,1,1,1],padding='VALID')
relu2 = tf.nn.relu(tf.nn.bias_add(conv2,conv2_biases))

#第四层:池化层,过滤器的尺寸为2×2,使用全0补充,步长为2。
#尺寸变化:10×10×6->5×5×16
with tf.variable_scope('layer
cdec
4-pool2'):
pool2 = tf.nn.max_pool(relu2,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')

#将第四层池化层的输出转化为第五层全连接层的输入格式。第四层的输出为5×5×16的矩阵,然而第五层全连接层需要的输入格式
#为向量,所以我们需要把代表每张图片的尺寸为5×5×16的矩阵拉直成一个长度为5×5×16的向量。
#举例说,每次训练64张图片,那么第四层池化层的输出的size为(64,5,5,16),拉直为向量,nodes=5×5×16=400,尺寸size变为(64,400)
pool_shape = pool2.get_shape().as_list()
nodes = pool_shape[1]*pool_shape[2]*pool_shape[3]
reshaped = tf.reshape(pool2,[-1,nodes])

#第五层:全连接层,nodes=5×5×16=400,400->120的全连接
#尺寸变化:比如一组训练样本为64,那么尺寸变化为64×400->64×120
#训练时,引入dropout,dropout在训练时会随机将部分节点的输出改为0,dropout可以避免过拟合问题。
#这和模型越简单越不容易过拟合思想一致,和正则化限制权重的大小,使得模型不能任意拟合训练数据中的随机噪声,以此达到避免过拟合思想一致。
#本文最后训练时没有采用dropout,dropout项传入参数设置成了False,因为训练和测试写在了一起没有分离,不过大家可以尝试。
with tf.variable_scope('layer5-fc1'):
fc1_weights = tf.get_variable('weight',[nodes,120],initializer=tf.truncated_normal_initializer(stddev=0.1))
if regularizer != None:
tf.add_to_collection('losses',regularizer(fc1_weights))
fc1_biases = tf.get_variable('bias',[120],initializer=tf.constant_initializer(0.1))
fc1 = tf.nn.relu(tf.matmul(reshaped,fc1_weights) + fc1_biases)
if train:
fc1 = tf.nn.dropout(fc1,0.5)

#第六层:全连接层,120->84的全连接
#尺寸变化:比如一组训练样本为64,那么尺寸变化为64×120->64×84
with tf.variable_scope('layer6-fc2'):
fc2_weights = tf.get_variable('weight',[120,84],initializer=tf.truncated_normal_initializer(stddev=0.1))
if regularizer != None:
tf.add_to_collection('losses',regularizer(fc2_weights))
fc2_biases = tf.get_variable('bias',[84],initializer=tf.truncated_normal_initializer(stddev=0.1))
fc2 = tf.nn.relu(tf.matmul(fc1,fc2_weights) + fc2_biases)
if train:
fc2 = tf.nn.dropout(fc2,0.5)

#第七层:全连接层(近似表示),84->10的全连接
#尺寸变化:比如一组训练样本为64,那么尺寸变化为64×84->64×10。最后,64×10的矩阵经过softmax之后就得出了64张图片分类于每种数字的概率,
#即得到最后的分类结果。
with tf.variable_scope('layer7-fc3'):
fc3_weights = tf.get_variable('weight',[84,10],initializer=tf.truncated_normal_initializer(stddev=0.1))
if regularizer != None:
tf.add_to_collection('losses',regularizer(fc3_weights))
fc3_biases = tf.get_variable('bias',[10],initializer=tf.truncated_normal_initializer(stddev=0.1))
logit = tf.matmul(fc2,fc3_weights) + fc3_biases
return logit

#正则化,交叉熵,平均交叉熵,损失函数,最小化损失函数,预测和实际equal比较,tf.equal函数会得到True或False,
#accuracy首先将tf.equal比较得到的布尔值转为float型,即True转为1.,False转为0,最后求平均值,即一组样本的正确率。
#比如:一组5个样本,tf.equal比较为[True False True False False],转化为float型为[1. 0 1. 0 0],准确率为2./5=40%。
regularizer = tf.contrib.layers.l2_regularizer(0.001)
y = inference(x,False,regularizer)
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y,labels=y_)
cross_entropy_mean = tf.reduce_mean(cross_entropy)
loss = cross_entropy_mean + tf.add_n(tf.get_collection('losses'))
train_op = tf.train.AdamOptimizer(0.001).minimize(loss)
correct_prediction = tf.equal(tf.cast(tf.argmax(y,1),tf.int32),y_)
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))

#每次获取batch_size个样本进行训练或测试
def get_batch(data,label,batch_size):
for start_index in range(0,len(data)-batch_size+1,batch_size):
slice_index = slice(start_index,start_index+batch_size)
yield data[slice_index],label[slice_index]

#创建Session会话
with tf.Session() as sess:
#初始化所有变量(权值,偏置等)
sess.run(tf.global_variables_initializer())

#将所有样本训练10次,每次训练中以64个为一组训练完所有样本。
#train_num可以设置大一些。
train_num = 10
batch_size = 64

for i in range(train_num):

train_loss,train_acc,batch_num = 0, 0, 0
for train_data_batch,train_label_batch in get_batch(train_data,train_label,batch_size):
_,err,acc = sess.run([train_op,loss,accuracy],feed_dict={x:train_data_batch,y_:train_label_batch})
train_loss+=err;train_acc+=acc;batch_num+=1
print("train loss:",train_loss/batch_num)
print("train acc:",train_acc/batch_num)

test_loss,test_acc,batch_num = 0, 0, 0
for test_data_batch,test_label_batch in get_batch(test_data,test_label,batch_size):
err,acc = sess.run([loss,accuracy],feed_dict={x:test_data_batch,y_:test_label_batch})
test_loss+=err;test_acc+=acc;batch_num+=1
print("test loss:",test_loss/batch_num)
print("test acc:",test_acc/batch_num)


最终测试准确率大概在99%左右。

随机运行一次的训练及测试结果如下:

...
test loss: 0.0766476487789
test acc: 0.98577724359
train loss: 0.0529618164884
train acc: 0.993930096051
test loss: 0.0702898033345
test acc: 0.987680288462
train loss: 0.0511233446804
train acc: 0.994213580576
test loss: 0.0881681445843
test acc: 0.982672275641
train loss: 0.0503073274342
train acc: 0.994030149413
test loss: 0.0700190923033
test acc: 0.986979166667


参考:《TensorFlow:实战Google深度学习框架》
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签:  LeNet-5 TensorFlow