您的位置:首页 > 编程语言

H.264中整数DCT变换,量化,反量化,反DCT究竟是如何实现的?(无代码,无真相)

2017-06-09 11:05 405 查看
 H.264中采用的是整数DCT变换,在实现的时候,该变换和量化又杂糅在一起,那么这些错综复杂的关系究竟是怎样纠缠的呢?在参考H.264乐园论坛会员cs1860wd的帖子和H.264 and MPEG-4 VIDEO COMPRESSION(第一版)这本书后,基于帖子和书上的讲解,给出相应的实现代码,并验证代码的正确性.

 

        还是以foreman视频第一帧第一个宏块第一个4*4块为例. 下面给出像素值:

====================== Y Data ======================

+----------------+----------------+----------------+----------------+

| 43,216,254,249,|251,254,254,253,|251,252,254,254,|254,254,254,253,|

| 49,198,193,211,|228,205,213,185,|211,207,186,248,|198,203,208,183,|

| 48,194,177,171,|197,173,185,136,|191,195,138,179,|142,176,177,135,|

| 46,214,225,169,|177,189,198,160,|203,208,177,165,|173,196,191,156,|

+----------------+----------------+----------------+----------------+

| 41,185,208,180,|203,228,226,200,|214,226,225,227,|228,225,224,210,|

| 31,130,173,178,|215,230,221,212,|220,229,227,228,|229,227,226,226,|

| 29,119,194,216,|211,213,219,222,|225,223,220,219,|218,218,218,218,|

| 25,126,219,224,|217,224,227,227,|227,226,225,224,|220,220,221,222,|

+----------------+----------------+----------------+----------------+

| 26,131,215,223,|226,225,225,225,|225,226,223,219,|221,221,219,220,|

| 30,136,216,226,|223,224,225,225,|224,221,217,221,|222,219,220,226,|

| 30,136,216,227,|224,224,225,223,|221,218,221,216,|211,224,224,211,|

| 29,135,217,225,|222,221,222,222,|221,209,181,155,|186,210,186,164,|

+----------------+----------------+----------------+----------------+

| 29,134,216,224,|226,230,230,227,|206,177,146,113,|149,162,147,150,|

| 29,135,219,231,|225,201,190,185,|163,144,153,140,|127,143,165,184,|

| 30,139,210,192,|165,142,134,133,|143,141,129,138,|150,178,201,207,|

| 30,125,166,145,|144,154,132,111,|118,161,175,180,|204,214,213,209,|

+----------------+----------------+----------------+----------------+

 

           该块的预测值为128(16个位置都是128),之前分析过,在JM8.6中,这一块在编码端和解码端的QDCT均为:

         9   -12   -11   -5

         3    -3      1     0 

         3    -1     -2     1

         0     0      0     0

 

         且用H.264visa从码流中得到的DCT系数为:(注意解码端的DCT与编码端的DCT必然不同)

====================== Y Data ======================

+------------------------+------------------------+------------------------+------------------------+

| 2304,-3840,-2816,-1600,|  768,  640, -256,  640,| 1280,  320,  256, -640,|  768, -320, -768,    0,|

|  960,-1200,  320, 0,|    0,    0,  320,    0,| -640, -800,    0,    0,|  960, -800,  320,    0,|

|  768, -320, -512,  320,|  512, -640,    0, -320,| -768,  320, -512,  320,|  768,    0,  256,    0,|

|    0,    0,    0,    0,|    0,    0,    0,    0,|    0,  400,    0,    0,| -320,    0,    0,    0,|

+------------------------+------------------------+------------------------+------------------------+

|-1024,-5120,-1792, -640,| 2560, -640, -256,    0,|  512,    0,    0,    0,|    0,    0,    0,    0,|

|    0, 1200, -640, -400,| -320,  400,    0,    0,|  640,    0,    0,    0,|  320,    0,    0,    0,|

|  512,    0, -256,    0,|    0,    0,    0,    0,|    0,    0,    0,    0,|    0,    0,    0,    0,|

|  320,    0,    0,    0,| -320,    0,    0,    0,|    0,    0,    0,    0,|    0,    0,    0,    0,|

+------------------------+------------------------+------------------------+------------------------+

|    0,  320,    0,    0,|    0,    0,    0,    0,| -768,  640,    0,    0,|  512,    0, -256,    0,|

|    0,    0,    0,    0,|    0,    0,    0,    0,|  640, -800,    0,    0,| -640, -400,  320,    0,|

|    0,    0,    0,    0,|    0,    0,    0,    0,| -256,  320,    0,    0,|    0,  320,    0,    0,|

|    0,    0,    0,    0,|    0,    0,    0,    0,|  320, -400,    0,    0,| -320,    0,    0,    0,|

+------------------------+------------------------+------------------------+------------------------+

| -512,  640, -256,    0,|    0,    0,    0,    0,| 1024, -320, -256,    0,| 1024, -320,    0,    0,|

|  960,-1200,  320,    0,|  960, -800,  320,    0,|-1280,  800,    0,  400,| -640,  400,    0,    0,|

| -512,  320,    0,    0,|    0,    0, -256,    0,|    0,    0, -256,    0,|  512,  640,    0,    0,|

|    0,    0,    0,    0,| -320,    0,    0,    0,| -640,  800,    0,    0,|    0,    0,    0,    0,|

+------------------------+------------------------+------------------------+------------------------+

 

           下面根据变换,量化,反量化和反变换公式给出如下程序,看看是否与上述数据一致.(需要特别指出的是:JM8.6中并不是这么实现的,但本质是相同的,最后结果也一样.)

 

#include <iostream>
#include <cmath>
#define BLOCK_SIZE 4
using namespace std;

int QP = 28; // 量化参数

//原始的YUV矩阵
int orgYUV[BLOCK_SIZE][BLOCK_SIZE] =
{
43, 216, 254, 249,
49, 198, 193, 211,
48, 194, 177, 171,
46, 214, 225, 169
};

//预测值矩阵
int predYUV[BLOCK_SIZE][BLOCK_SIZE] =
{
128, 128, 128, 128,
128, 128, 128, 128,
128, 128, 128, 128,
128, 128, 128, 128
};

int D[BLOCK_SIZE][BLOCK_SIZE];  //中间矩阵
int Di[BLOCK_SIZE][BLOCK_SIZE]; //中间矩阵

int W[BLOCK_SIZE][BLOCK_SIZE];  //核矩阵
int Z[BLOCK_SIZE][BLOCK_SIZE];  //QDCT矩阵
int Wi[BLOCK_SIZE][BLOCK_SIZE]; //Wi矩阵

int Xi[BLOCK_SIZE][BLOCK_SIZE]; //解码的残差矩阵

//Cf矩阵
int Cf[BLOCK_SIZE][BLOCK_SIZE]=
{
1, 1,  1, 1,
2, 1, -1, -2,
1,-1, -1, 1,
1,-2,  2, -1
};

//Ci矩阵
int Ci[BLOCK_SIZE][BLOCK_SIZE]=
{
2,  2,  2,  1,
2,  1, -2, -2,
2, -1, -2,  2,
2, -2,  2, -1
};

//MF矩阵
int MF[6][3]=
{
13107, 5243, 8066,
11916, 4660, 7490,
10082, 4194, 6554,
9362,  3647, 5825,
8192,  3355, 5243,
7282,  2893, 4559
};

//Qstep矩阵
int V[6][3]=
{
10, 16, 13,
11, 18, 14,
13, 20, 16,
14, 23, 18,
16, 25, 20,
18, 29, 23
};

//矩阵转置
void matrixTransform(int a[][BLOCK_SIZE])
{
int i, j, tmp;
for(i = 0; i < BLOCK_SIZE; i++)
{
for(j = 0; j < BLOCK_SIZE; j++)
{
if(i < j)
{
tmp = a[i][j];
a[i][j] = a[j][i];
a[j][i] = tmp;
}
}
}
}

//矩阵求差
void  matrixSubtract(int a[][BLOCK_SIZE],int b[][BLOCK_SIZE])
{
int i, j;
for(i = 0;i < BLOCK_SIZE; i++)
{
for(j = 0; j < BLOCK_SIZE; j++)
{
a[i][j] -= b[i][j];
}
}
}

//矩阵求积
void  matrixMultiply(int a[][BLOCK_SIZE],int b[][BLOCK_SIZE],int c[][BLOCK_SIZE])
{
int i, j, k;
for(i = 0; i < BLOCK_SIZE; i++)
{
for(j = 0; j < BLOCK_SIZE; j++)
{
c[i][j] = 0;
for(k = 0; k < BLOCK_SIZE; k++)
{
c[i][j] += a[i][k] * b[k][j];
}
}
}
}

//矩阵显示
void matrixShow(int a[][BLOCK_SIZE])
{
int i, j;
cout << "*****************************" << endl;
for(i = 0; i < BLOCK_SIZE; i++)
{
for(j = 0; j < BLOCK_SIZE; j++)
{
cout << a[i][j] << "\t";
}
cout << endl;
}

cout << "*****************************" << endl << endl;
}

//求QDCT
void quantizeDCT(int W[][BLOCK_SIZE])
{
// QP决定了qbits和f, QP和位置(i, j)共同决定了mf
int qbits = 15 + floor(QP / 6);
int f = (int)( pow(2.0, qbits) / 3 );
int mf;

int i, j, k;
for(i = 0; i < BLOCK_SIZE; i++)
{
for(j = 0; j < BLOCK_SIZE; j++)
{
//以下均依公式实现

//(0, 0), (2, 0), (0, 2), (2, 2)  mf为 MF[QP % 6][0]
//(1, 1), (3, 1), (1, 3), (3, 3)  mf为 MF[QP % 6][1];
// other positions                mf为 MF[QP % 6][2];

if((0 == i || 2 == i) && (0 == j || 2 == j))
k = 0;
else if((1 == i || 3 == i) && (1 == j || 3 == j))
k = 1;
else
k = 2;

mf = MF[QP % 6][k];

Z[i][j] = ( abs(W[i][j]) * mf + f ) >> qbits;

if(W[i][j] < 0)
Z[i][j] = -Z[i][j];
}

}
}

//求Wi(即解码端的DCT) (Z为QDCT)
void reverseQuantize(int Z[][BLOCK_SIZE])
{
int t = floor(QP / 6);
int f = (int)pow(2, t);
int v;

int i, j, k;
for(i = 0; i < BLOCK_SIZE; i++)
{
for(j = 0; j < BLOCK_SIZE; j++)
{
//以下均依公式实现

if((0 == i || 2 == i) && (0 == j || 2 == j))
k = 0;
else if((1 == i || 3 == i) && (1 == j || 3 == j))
k = 1;
else
k = 2;

v = V[QP % 6 ][k];
Wi[i][j] = Z[i][j] * v * f;
}
}
}

int main()
{
matrixSubtract(orgYUV, predYUV);
cout << "Residual matrix is" << endl;
matrixShow(orgYUV);

//此时orgYUV变为残差矩阵
matrixMultiply(Cf, orgYUV, D);
matrixTransform(Cf);
matrixMultiply(D, Cf, W);

//得到的W即为核
cout << "Matrix Core(W) is" << endl;
matrixShow(W);

//利用核W来得到QDCT(Z)
quantizeDCT(W);
cout << "Matrix QDCT(Z) is" << endl;
matrixShow(Z);

//利用QDCT(Z)得到解码端的DCT(Wi).(Wi与编码端DCT必然不同)
reverseQuantize(Z);
cout << "Matrix W'(解码端DCT) is" << endl;
matrixShow(Wi);

//利用Wi得到解码的残差矩阵Xi
matrixMultiply(Ci, Wi, Di);
matrixTransform(Ci);
matrixMultiply(Di, Ci, Xi);
int i,j;
for(i = 0;i < 4; i++)
{
for(j = 0; j < 4; j++)
{
Xi[i][j] = int( Xi[i][j] / 256.0 + 0.5 );
}
}
cout << "Matrix Xi(解码端残差) is" << endl;
matrixShow(Xi);

return 0;
}


           结果为:(可以看出,结果中的QDCT和解码端的DCT都与之前的数据吻合,从而证明上面程序的实现是正确的.)

 

Residual matrix is

*****************************

-85     88      126     121

-79     70      65      83

-80     66      49      43

-82     86      97      41

*****************************

Matrix Core(W) is

*****************************

609     -1255   -685    -560

277     -476    113     -73

175     -159    -119    98

-14     -13     4       1

*****************************

Matrix QDCT(Z) is

*****************************
9       -12     -11     -5

3       -3      1       0

3       -1      -2      1

0       0       0       0
*****************************

Matrix W'(解码端DCT) is

*****************************
2304    -3840   -2816   -1600

960     -1200   320     0

768     -320    -512    320

0       0       0       0
*****************************

Matrix Xi(解码端残差) is

*****************************

-77     88      132     110

-80     63      67      77

-82     62      48      39

-79     87      93      32

*****************************

           下面,简要看看整数DCT变换的原理.(关于整数DCT变换公式的推倒,请参考余兆明的《图像编码标准H.264技术》). 

          

           DCT变换为:      DCT = A * X * At

           量化为:           QDCT =  floor(DCT/Qstep)

           反量化为:        DCT‘  = QDCT * Qstep

           反DCT为:              X’ = At * DCT‘ * A

 

           但在H.264中采用的是整数DCT, 在JM8.6中的实现方式也很有讲究:( .* 表示矩阵对应元素相乘)

          整数DCT变化为:       DCT = (Cf * X *Cft) .*E

          量化为:                    QDCT = floor(DCT/Qstep)

          反量化为:                  DCT‘ = QDCT * Qstep

          整数反DCT变换为:        X’ = Ci * (DCT‘ .* Ei) *Ci

 

          在实现的时候,经常不直接得到DCT系数,而是将变换和量化结合在一起实现. 整数DCT变换有很多好处:没有除法,没有浮点数,所以高效且准确,而且减少了矩阵运算.    

        

           最后感慨一下:如果上面的程序用matlab来仿真,就简单多了,matlab太适合处理矩阵问题了.
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签:  h.264
相关文章推荐