您的位置:首页 > 编程语言

音视频数据处理(6)--- PCM音频采样数据处理代码实现

2017-05-26 01:46 477 查看
音频采样数据在视频播放器的解码流程中的位置如下图所示。



本文分别介绍如下几个PCM音频采样数据处理函数:

分离PCM16LE双声道音频采样数据的左声道和右声道

将PCM16LE双声道音频采样数据中左声道的音量降一半

将PCM16LE双声道音频采样数据的声音速度提高一倍

将PCM16LE双声道音频采样数据转换为PCM8音频采样数据

从PCM16LE单声道音频采样数据中截取一部分数据

将PCM16LE双声道音频采样数据转换为WAVE格式音频数据

注:PCM音频数据可以使用音频编辑软件导入查看。例如收费的专业音频编辑软件Adobe Audition,或者免费开源的音频编辑软件Audacity


函数列表


(1)分离PCM16LE双声道音频采样数据的左声道和右声道

本程序中的函数可以将PCM16LE双声道数据中左声道和右声道的数据分离成两个文件。函数的代码如下所示。

[cpp] view
plain copy

/**

* Split Left and Right channel of 16LE PCM file.

* @param url Location of PCM file.

*

*/

int simplest_pcm16le_split(char *url){

FILE *fp=fopen(url,"rb+");

FILE *fp1=fopen("output_l.pcm","wb+");

FILE *fp2=fopen("output_r.pcm","wb+");

unsigned char *sample=(unsigned char *)malloc(4);

while(!feof(fp)){

fread(sample,1,4,fp);

//L

fwrite(sample,1,2,fp1);

//R

fwrite(sample+2,1,2,fp2);

}

free(sample);

fclose(fp);

fclose(fp1);

fclose(fp2);

return 0;

}

调用上面函数的方法如下所示。

[cpp] view
plain copy

simplest_pcm16le_split("NocturneNo2inEflat_44.1k_s16le.pcm");

从代码可以看出,PCM16LE双声道数据中左声道和右声道的采样值是间隔存储的。每个采样值占用2Byte空间。代码运行后,会把NocturneNo2inEflat_44.1k_s16le.pcm的PCM16LE格式的数据分离为两个单声道数据:

output_l.pcm:左声道数据。

output_r.pcm:右声道数据。

注:本文中声音样值的采样频率一律是44100Hz,采样格式一律为16LE。“16”代表采样位数是16bit。由于1Byte=8bit,所以一个声道的一个采样值占用2Byte。“LE”代表Little Endian,代表2 Byte采样值的存储方式为高位存在高地址中。

下图为输入的双声道PCM数据的波形图。上面的波形图是左声道的图形,下面的波形图是右声道的波形。图中的横坐标是时间,总长度为22秒;纵坐标是取样值,取值范围从-32768到32767。



下图为分离后左声道数据output_l.pcm的音频波形图。



下图为分离后右声道数据output_r.pcm的音频波形图。




(2)将PCM16LE双声道音频采样数据中左声道的音量降一半

本程序中的函数可以将PCM16LE双声道数据中左声道的音量降低一半。函数的代码如下所示。

[cpp] view
plain copy

/**

* Halve volume of Left channel of 16LE PCM file

* @param url Location of PCM file.

*/

int simplest_pcm16le_halfvolumeleft(char *url){

FILE *fp=fopen(url,"rb+");

FILE *fp1=fopen("output_halfleft.pcm","wb+");

int cnt=0;

unsigned char *sample=(unsigned char *)malloc(4);

while(!feof(fp)){

short *samplenum=NULL;

fread(sample,1,4,fp);

samplenum=(short *)sample;

*samplenum=*samplenum/2;

//L

fwrite(sample,1,2,fp1);

//R

fwrite(sample+2,1,2,fp1);

cnt++;

}

printf("Sample Cnt:%d\n",cnt);

free(sample);

fclose(fp);

fclose(fp1);

return 0;

}

调用上面函数的方法如下所示。

[cpp] view
plain copy

simplest_pcm16le_halfvolumeleft("NocturneNo2inEflat_44.1k_s16le.pcm");

从源代码可以看出,本程序在读出左声道的2 Byte的取样值之后,将其当成了C语言中的一个short类型的变量。将该数值除以2之后写回到了PCM文件中。下图为输入PCM双声道音频采样数据的波形图。



下图为输出的左声道经过处理后的波形图。可以看出左声道的波形幅度降低了一半。




(3)将PCM16LE双声道音频采样数据的声音速度提高一倍

本程序中的函数可以通过抽象的方式将PCM16LE双声道数据的速度提高一倍。函数的代码如下所示。

[cpp] view
plain copy

/**

* Re-sample to double the speed of 16LE PCM file

* @param url Location of PCM file.

*/

int simplest_pcm16le_doublespeed(char *url){

FILE *fp=fopen(url,"rb+");

FILE *fp1=fopen("output_doublespeed.pcm","wb+");

int cnt=0;

unsigned char *sample=(unsigned char *)malloc(4);

while(!feof(fp)){

fread(sample,1,4,fp);

if(cnt%2!=0){

//L

fwrite(sample,1,2,fp1);

//R

fwrite(sample+2,1,2,fp1);

}

cnt++;

}

printf("Sample Cnt:%d\n",cnt);

free(sample);

fclose(fp);

fclose(fp1);

return 0;

}

调用上面函数的方法如下所示。

[cpp] view
plain copy

simplest_pcm16le_doublespeed("NocturneNo2inEflat_44.1k_s16le.pcm");

从源代码可以看出,本程序只采样了每个声道奇数点的样值。处理完成后,原本22秒左右的音频变成了11秒左右。音频的播放速度提高了2倍,音频的音调也变高了很多。下图为输入PCM双声道音频采样数据的波形图。



下图为输出的PCM双声道音频采样数据的波形图。通过时间轴可以看出音频变短了很多。




(4)将PCM16LE双声道音频采样数据转换为PCM8音频采样数据

本程序中的函数可以通过计算的方式将PCM16LE双声道数据16bit的采样位数转换为8bit。函数的代码如下所示。

[cpp] view
plain copy

/**

* Convert PCM-16 data to PCM-8 data.

* @param url Location of PCM file.

*/

int simplest_pcm16le_to_pcm8(char *url){

FILE *fp=fopen(url,"rb+");

FILE *fp1=fopen("output_8.pcm","wb+");

int cnt=0;

unsigned char *sample=(unsigned char *)malloc(4);

while(!feof(fp)){

short *samplenum16=NULL;

char samplenum8=0;

unsigned char samplenum8_u=0;

fread(sample,1,4,fp);

//(-32768-32767)

samplenum16=(short *)sample;

samplenum8=(*samplenum16)>>8;

//(0-255)

samplenum8_u=samplenum8+128;

//L

fwrite(&samplenum8_u,1,1,fp1);

samplenum16=(short *)(sample+2);

samplenum8=(*samplenum16)>>8;

samplenum8_u=samplenum8+128;

//R

fwrite(&samplenum8_u,1,1,fp1);

cnt++;

}

printf("Sample Cnt:%d\n",cnt);

free(sample);

fclose(fp);

fclose(fp1);

return 0;

}

调用上面函数的方法如下所示。

[cpp] view
plain copy

simplest_pcm16le_to_pcm8("NocturneNo2inEflat_44.1k_s16le.pcm");

PCM16LE格式的采样数据的取值范围是-32768到32767,而PCM8格式的采样数据的取值范围是0到255。所以PCM16LE转换到PCM8需要经过两个步骤:第一步是将-32768到32767的16bit有符号数值转换为-128到127的8bit有符号数值,第二步是将-128到127的8bit有符号数值转换为0到255的8bit无符号数值。在本程序中,16bit采样数据是通过short类型变量存储的,而8bit采样数据是通过unsigned char类型存储的。下图为输入的16bit的PCM双声道音频采样数据的波形图。



下图为输出的8bit的PCM双声道音频采样数据的波形图。注意观察图中纵坐标的取值范围已经变为0至255。如果仔细聆听声音的话,会发现8bit PCM的音质明显不如16 bit PCM的音质。




(5)将从PCM16LE单声道音频采样数据中截取一部分数据

本程序中的函数可以从PCM16LE单声道数据中截取一段数据,并输出截取数据的样值。函数的代码如下所示。

[cpp] view
plain copy

/**

* Cut a 16LE PCM single channel file.

* @param url Location of PCM file.

* @param start_num start point

* @param dur_num how much point to cut

*/

int simplest_pcm16le_cut_singlechannel(char *url,int start_num,int dur_num){

FILE *fp=fopen(url,"rb+");

FILE *fp1=fopen("output_cut.pcm","wb+");

FILE *fp_stat=fopen("output_cut.txt","wb+");

unsigned char *sample=(unsigned char *)malloc(2);

int cnt=0;

while(!feof(fp)){

fread(sample,1,2,fp);

if(cnt>start_num&&cnt<=(start_num+dur_num)){

fwrite(sample,1,2,fp1);

short samplenum=sample[1];

samplenum=samplenum*256;

samplenum=samplenum+sample[0];

fprintf(fp_stat,"%6d,",samplenum);

if(cnt%10==0)

fprintf(fp_stat,"\n",samplenum);

}

cnt++;

}

free(sample);

fclose(fp);

fclose(fp1);

fclose(fp_stat);

return 0;

}

调用上面函数的方法如下所示。

[cpp] view
plain copy

simplest_pcm16le_cut_singlechannel("drum.pcm",2360,120);

本程序可以从PCM数据中选取一段采样值保存下来,并且输出这些采样值的数值。上述代码运行后,会把单声道PCM16LE格式的“drum.pcm”中从2360点开始的120点的数据保存成output_cut.pcm文件。下图为“drum.pcm”的波形图,该音频采样频率为44100KHz,长度为0.5秒,一共包含约22050个采样点。



下图为截取出来的output_cut.pcm文件中的数据。



下面列出了上述数据的采样值。

[plain] view
plain copy

4460, 5192, 5956, 6680, 7199, 6706, 5727, 4481, 3261, 1993,

1264, 747, 767, 752, 1248, 1975, 2473, 2955, 2952, 2447,

974, -1267, -4000, -6965,-10210,-13414,-16639,-19363,-21329,-22541,

23028,-22545,-21055,-19067,-16829,-14859,-12596, -9900, -6684, -3475,

-983, 1733, 3978, 5734, 6720, 6978, 6993, 7223, 7225, 7440,

7688, 8431, 8944, 9468, 9947, 10688, 11194, 11946, 12449, 12446,

12456, 11974, 11454, 10952, 10167, 9425, 8153, 6941, 5436, 3716,

1952, 236, -1254, -2463, -3493, -4223, -4695, -4927, -5190, -4941,

-4188, -2956, -1490, -40, 705, 932, 446, -776, -2512, -3994,

-5723, -7201, -8687,-10157,-11134,-11661,-11642,-11168,-10155, -9142,

-7888, -7146, -6186, -5694, -4971, -4715, -4498, -4471, -4468, -4452,

-4452, -3940, -2980, -1984, -752, 257, 1021, 1264, 1032, 31,


(6)将PCM16LE双声道音频采样数据转换为WAVE格式音频数据

WAVE格式音频(扩展名为“.wav”)是Windows系统中最常见的一种音频。该格式的实质就是在PCM文件的前面加了一个文件头。本程序的函数就可以通过在PCM文件前面加一个WAVE文件头从而封装为WAVE格式音频。函数的代码如下所示。

[cpp] view
plain copy

/**

* Convert PCM16LE raw data to WAVE format

* @param pcmpath Input PCM file.

* @param channels Channel number of PCM file.

* @param sample_rate Sample rate of PCM file.

* @param wavepath Output WAVE file.

*/

int simplest_pcm16le_to_wave(const char *pcmpath,int channels,int sample_rate,const char *wavepath)

{

typedef struct WAVE_HEADER{

char fccID[4];

unsigned long dwSize;

char fccType[4];

}WAVE_HEADER;

typedef struct WAVE_FMT{

char fccID[4];

unsigned long dwSize;

unsigned short wFormatTag;

unsigned short wChannels;

unsigned long dwSamplesPerSec;

unsigned long dwAvgBytesPerSec;

unsigned short wBlockAlign;

unsigned short uiBitsPerSample;

}WAVE_FMT;

typedef struct WAVE_DATA{

char fccID[4];

unsigned long dwSize;

}WAVE_DATA;

if(channels==0||sample_rate==0){

channels = 2;

sample_rate = 44100;

}

int bits = 16;

WAVE_HEADER pcmHEADER;

WAVE_FMT pcmFMT;

WAVE_DATA pcmDATA;

unsigned short m_pcmData;

FILE *fp,*fpout;

fp=fopen(pcmpath, "rb");

if(fp == NULL) {

printf("open pcm file error\n");

return -1;

}

fpout=fopen(wavepath, "wb+");

if(fpout == NULL) {

printf("create wav file error\n");

return -1;

}

//WAVE_HEADER

memcpy(pcmHEADER.fccID,"RIFF",strlen("RIFF"));

memcpy(pcmHEADER.fccType,"WAVE",strlen("WAVE"));

fseek(fpout,sizeof(WAVE_HEADER),1);

//WAVE_FMT

pcmFMT.dwSamplesPerSec=sample_rate;

pcmFMT.dwAvgBytesPerSec=pcmFMT.dwSamplesPerSec*sizeof(m_pcmData);

pcmFMT.uiBitsPerSample=bits;

memcpy(pcmFMT.fccID,"fmt ",strlen("fmt "));

pcmFMT.dwSize=16;

pcmFMT.wBlockAlign=2;

pcmFMT.wChannels=channels;

pcmFMT.wFormatTag=1;

fwrite(&pcmFMT,sizeof(WAVE_FMT),1,fpout);

//WAVE_DATA;

memcpy(pcmDATA.fccID,"data",strlen("data"));

pcmDATA.dwSize=0;

fseek(fpout,sizeof(WAVE_DATA),SEEK_CUR);

fread(&m_pcmData,sizeof(unsigned short),1,fp);

while(!feof(fp)){

pcmDATA.dwSize+=2;

fwrite(&m_pcmData,sizeof(unsigned short),1,fpout);

fread(&m_pcmData,sizeof(unsigned short),1,fp);

}

pcmHEADER.dwSize=44+pcmDATA.dwSize;

rewind(fpout);

fwrite(&pcmHEADER,sizeof(WAVE_HEADER),1,fpout);

fseek(fpout,sizeof(WAVE_FMT),SEEK_CUR);

fwrite(&pcmDATA,sizeof(WAVE_DATA),1,fpout);

fclose(fp);

fclose(fpout);

return 0;

}

调用上面函数的方法如下所示。

[cpp] view
plain copy

simplest_pcm16le_to_wave("NocturneNo2inEflat_44.1k_s16le.pcm",2,44100,"output_nocturne.wav");

WAVE文件是一种RIFF格式的文件。其基本块名称是“WAVE”,其中包含了两个子块“fmt”和“data”。从编程的角度简单说来就是由WAVE_HEADER、WAVE_FMT、WAVE_DATA、采样数据共4个部分组成。它的结构如下所示。

WAVE_HEADER
WAVE_FMT
WAVE_DATA
PCM数据
其中前3部分的结构如下所示。在写入WAVE文件头的时候给其中的每个字段赋上合适的值就可以了。但是有一点需要注意:WAVE_HEADER和WAVE_DATA中包含了一个文件长度信息的dwSize字段,该字段的值必须在写入完音频采样数据之后才能获得。因此这两个结构体最后才写入WAVE文件中。

[cpp] view
plain copy

typedef struct WAVE_HEADER{

char fccID[4];

unsigned long dwSize;

char fccType[4];

}WAVE_HEADER;

typedef struct WAVE_FMT{

char fccID[4];

unsigned long dwSize;

unsigned short wFormatTag;

unsigned short wChannels;

unsigned long dwSamplesPerSec;

unsigned long dwAvgBytesPerSec;

unsigned short wBlockAlign;

unsigned short uiBitsPerSample;

}WAVE_FMT;

typedef struct WAVE_DATA{

char fccID[4];

unsigned long dwSize;

}WAVE_DATA;

本程序的函数执行完成后,就可将NocturneNo2inEflat_44.1k_s16le.pcm文件封装成output_nocturne.wav文件。
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: