您的位置:首页 > 理论基础 > 计算机网络

(尤其是训练集验证集的生成)深度学习 tensorflow 实战(2) 实现简单神经网络以及随机梯度下降算法S.G.D

2017-03-06 11:15 1186 查看
在之前的实战(1) 中,我们将数据清洗整理后,得到了'notMNIST.pickle'数据。

本文将阐述利用tensorflow创建一个简单的神经网络以及随机梯度下降算法

[java]
view plain
copy
print?





# These are all the modules we'll be using later. Make sure you can import them  
# before proceeding further.  
from __future__ import print_function  
import numpy as np  
import tensorflow as tf  
from six.moves import cPickle as pickle  
from six.moves import range  

首先,载入之前整理好的数据'notMNIST.pickle'。(在实战(1)中得到的)

[python]
view plain
copy
print?





pickle_file = 'notMNIST.pickle'  
  
with open(pickle_file, 'rb') as f:  
    save = pickle.load(f)  
    train_dataset = save['train_dataset']  
    train_labels = save['train_labels']  
    valid_dataset = save['valid_dataset']  
    valid_labels = save['valid_labels']  
    test_dataset = save['test_dataset']  
    test_labels = save['test_labels']  
  
    del save  # hint to help gc free up memory 帮助回收内存  
      
    print('Training set', train_dataset.shape, train_labels.shape)  
    print('Validation set', valid_dataset.shape, valid_labels.shape)  
    print('Test set', test_dataset.shape, test_labels.shape)  

运行结果为:

Training set (200000, 28, 28) (200000,)
Validation set (10000, 28, 28) (10000,)
Test set (10000, 28, 28) (10000,)

下一步转换数据格式。

将图像拉成一维数组。

dataset成为二维数组。

label也成为二位数组。

0 对应[1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0]

1 对应[0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0]

[python]
view plain
copy
print?





image_size = 28  
num_labels = 10  
  
def reformat(dataset, labels):  
    dataset = dataset.reshape((-1, image_size * image_size)).astype(np.float32) # -1 means unspecified value adaptive   
    # Map 0 to [1.0, 0.0, 0.0 ...], 1 to [0.0, 1.0, 0.0 ...]  
    labels = (np.arange(num_labels) == labels[:,None]).astype(np.float32)  
    return dataset, labels  
train_dataset, train_labels = reformat(train_dataset, train_labels)  
valid_dataset, valid_labels = reformat(valid_dataset, valid_labels)  
test_dataset, test_labels = reformat(test_dataset, test_labels)  
print('Training set', train_dataset.shape, train_labels.shape)  
print('Validation set', valid_dataset.shape, valid_labels.shape)  
print('Test set', test_dataset.shape, test_labels.shape)  

运行结果为:

Training set (200000, 784) (200000, 10)
Validation set (10000, 784) (10000, 10)
Test set (10000, 784) (10000, 10)


准备好数据后,首先使用简单梯度下降法的训练数据。
tensorflow 这样工作: 首先描述你的输入,变量,以及操作。这些组成了计算图。 之后的操作要在这个block下面进行。

比如:

[python]
view plain
copy
print?





with graph.as_default():  
    ...  

然后可以用命令session.run()运行你定义的操作。 上下文管理器用来定义session.你所定义的操作也一定要在session的block下面。

[python]
view plain
copy
print?





with tf.Session(graph=graph) as session:  
    ...  

这时我们可以载入数据进行训练啦。

[python]
view plain
copy
print?





# With gradient descent training, even this much data is prohibitive.  
# Subset the training data for faster turnaround.  
train_subset = 10000  
  
graph = tf.Graph()  
with graph.as_default():  
    # Input data. 定义输入数据并载入                            -----------------------------------------1  
    # Load the training, validation and test data into constants that are  
    # attached to the graph.  
    tf_train_dataset = tf.constant(train_dataset[:train_subset, :])  
    tf_train_labels = tf.constant(train_labels[:train_subset])  
      
    tf_valid_dataset = tf.constant(valid_dataset)  
    tf_test_dataset = tf.constant(test_dataset)  
    
    # Variables.定义变量 要训练得到的参数weight, bias  ----------------------------------------2  
    # These are the parameters that we are going to be training. The weight  
    # matrix will be initialized using random values following a (truncated)  
    # normal distribution. The biases get initialized to zero.  
    weights = tf.Variable(tf.truncated_normal([image_size * image_size, num_labels])) # changing when training   
    biases = tf.Variable(tf.zeros([num_labels])) # changing when training   
      
    #   tf.truncated_normal  
    #   tf.truncated_normal(shape, mean=0.0, stddev=1.0, dtype=tf.float32, seed=None, name=None)  
    #   Outputs random values from a truncated normal distribution.  
    #  The generated values follow a normal distribution with specified mean and  
    #  standard deviation, except that values whose magnitude is more than 2 standard  
    #  deviations from the mean are dropped and re-picked.  
      
    # tf.zeros  
    #  tf.zeros([10])      <tf.Tensor 'zeros:0' shape=(10,) dtype=float32>  
  
  
    
    # Training computation. 训练数据                                ----------------------------------------3  
    # We multiply the inputs with the weight matrix, and add biases. We compute  
    # the softmax and cross-entropy (it's one operation in TensorFlow, because  
    # it's very common, and it can be optimized). We take the average of this  
    # cross-entropy across all training examples: that's our loss.  
    logits = tf.matmul(tf_train_dataset, weights) + biases             # tf.matmul          matrix multiply       
      
    loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits, tf_train_labels))  # compute average cross entropy loss  
    #  softmax_cross_entropy_with_logits  
      
    # The activation ops provide different types of nonlinearities for use in neural  
    # networks.  These include smooth nonlinearities (`sigmoid`, `tanh`, `elu`,  
    #   `softplus`, and `softsign`), continuous but not everywhere differentiable  
    # functions (`relu`, `relu6`, and `relu_x`), and random regularization (`dropout`).  
      
      
    #  tf.reduce_mean  
    #    tf.reduce_mean(input_tensor, reduction_indices=None, keep_dims=False, name=None)  
    #   Computes the mean of elements across dimensions of a tensor.  
    
    # Optimizer.                                                                    -----------------------------------------4  
    # We are going to find the minimum of this loss using gradient descent.  
    optimizer = tf.train.GradientDescentOptimizer(0.5).minimize(loss)     # 0.5 means learning rate  
    #  tf.train.GradientDescentOptimizer(  
    #  tf.train.GradientDescentOptimizer(self, learning_rate, use_locking=False, name='GradientDescent')  
      
      
      
    
    # Predictions for the training, validation, and test data.---------------------------------------5  
    # These are not part of training, but merely here so that we can report  
    # accuracy figures as we train.  
      
    train_prediction = tf.nn.softmax(logits) # weights  and bias have been changed  
    valid_prediction = tf.nn.softmax(tf.matmul(tf_valid_dataset, weights) + biases)  
    test_prediction = tf.nn.softmax(tf.matmul(tf_test_dataset, weights) + biases)  
      
    # tf.nn.softmax  
    #  Returns: A `Tensor`. Has the same type as `logits`. Same shape as `logits`.(num, 784) *(784,10)  + = (num, 10)  

下面进行简单的梯度下降,开始迭代。

[python]
view plain
copy
print?





num_steps = 801  
  
def accuracy(predictions, labels):  
    ''''' predictions = [0.8,0,0,0,0.1,0,0,0.1,0,0] 
        labels = [1,0,0,0,0,0,0,0,0,0] 
    '''  
    return (100.0 * np.sum(np.argmax(predictions, 1) == np.argmax(labels, 1)) / predictions.shape[0])  
  
with tf.Session(graph=graph) as session:  
    # This is a one-time operation which ensures the parameters get initialized as  
    # we described in the graph:   
    #  random weights for the matrix, zeros for the biases.   
    tf.initialize_all_variables().run() # initialize  
    print('Initialized')  
    for step in xrange(num_steps):  
        # Run the computations. We tell .run() that we want to run the optimizer,  
        # and get the loss value and the training predictions returned as numpy  
        # arrays.  
         _, l, predictions = session.run([optimizer, loss, train_prediction]) # using train_prediction to train and return prediction in train data set  
        if (step % 100 == 0):  
            print('Loss at step %d: %f' % (step, l))  
            print('Training accuracy: %.1f%%' % accuracy(  
            predictions, train_labels[:train_subset, :]))  
            # Calling .eval() on valid_prediction is basically like calling run(), but  
            # just to get that one numpy array. Note that it recomputes all its graph  
            # dependencies.  
            print('Validation accuracy: %.1f%%' % accuracy(valid_prediction.eval(), valid_labels))  
          
    print('Test accuracy: %.1f%%' % accuracy(test_prediction.eval(), test_labels))  

运行结果如下:

Initialized

Loss at step 0: 17.639723

Training accuracy: 8.9%

Validation accuracy: 11.4%

Loss at step 100: 2.268863

Training accuracy: 71.8%

Validation accuracy: 70.8%

Loss at step 200: 1.818829

Training accuracy: 74.9%

Validation accuracy: 73.6%

Loss at step 300: 1.580101

Training accuracy: 76.5%

Validation accuracy: 74.5%

Loss at step 400: 1.419103

Training accuracy: 77.1%

Validation accuracy: 75.1%

Loss at step 500: 1.299344

Training accuracy: 77.7%

Validation accuracy: 75.3%

Loss at step 600: 1.205005

Training accuracy: 78.3%

Validation accuracy: 75.3%

Loss at step 700: 1.127984

Training accuracy: 78.8%

Validation accuracy: 75.5%

Loss at step 800: 1.063572

Training accuracy: 79.3%

Validation accuracy: 75.7%

Test accuracy: 82.6%

之后,我们可以用更快的优化算法,随机梯度算法进行训练。

graph的定义与之前类似,不同的是我们的训练数据是一小批一小批的。

所以要在运行session.run()时并导入小批量数据之前定义占位量(placeholder).。

[python]
view plain
copy
print?





batch_size = 128  
  
graph = tf.Graph()  
with graph.as_default():  
    # Input data. For the training data, we use a placeholder that will be fed ----------------------------------------1  
    # at run time with a training minibatch.  
    #  相当于开辟空间  
    tf_train_dataset = tf.placeholder(tf.float32, shape=(batch_size, image_size * image_size))  
    tf_train_labels = tf.placeholder(tf.float32, shape=(batch_size, num_labels))  
      
    tf_valid_dataset = tf.constant(valid_dataset)  
    tf_test_dataset = tf.constant(test_dataset)  
    
    # Variables.                                                                                                       ------------------------------------------2  
    weights = tf.Variable(tf.truncated_normal([image_size * image_size, num_labels]))  
    biases = tf.Variable(tf.zeros([num_labels]))  
    
    # Training computation.                                                                                  ------------------------------------------3  
    logits = tf.matmul(tf_train_dataset, weights) + biases  
    loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits, tf_train_labels))  
    
  # Optimizer.                                                                                                       -------------------------------------------4  
    optimizer = tf.train.GradientDescentOptimizer(0.5).minimize(loss)  
    
    # Predictions for the training, validation, and test data.                             --------------------------------------------5  
    train_prediction = tf.nn.softmax(logits)  
    valid_prediction = tf.nn.softmax(tf.matmul(tf_valid_dataset, weights) + biases)  
    test_prediction = tf.nn.softmax(tf.matmul(tf_test_dataset, weights) + biases)  

下面是对应的训练操作代码:

[python]
view plain
copy
print?





num_steps = 3001  
  
with tf.Session(graph=graph) as session:  
    tf.initialize_all_variables().run()  
    print("Initialized")  
    for step in range(num_steps):  
    # Pick an offset within the training data, which has been randomized.  
    # Note: we could use better randomization across epochs.  
        offset = (step * batch_size) % (train_labels.shape[0] - batch_size)  
    # Generate a minibatch.  
        batch_data = train_dataset[offset:(offset + batch_size), :]  
        batch_labels = train_labels[offset:(offset + batch_size), :]  
    # Prepare a dictionary telling the session where to feed the minibatch.  
    # The key of the dictionary is the placeholder node of the graph to be fed,  
    # and the value is the numpy array to feed to it.  
        #  传递值到tf的命名空间  
        feed_dict = {tf_train_dataset : batch_data, tf_train_labels : batch_labels}  
        _, l, predictions = session.run([optimizer, loss, train_prediction], feed_dict=feed_dict)  
        if (step % 500 == 0):  
            print("Minibatch loss at step %d: %f" % (step, l))  
            print("Minibatch accuracy: %.1f%%" % accuracy(predictions, batch_labels))  
            print("Validation accuracy: %.1f%%" % accuracy(valid_prediction.eval(), valid_labels))  
    print("Test accuracy: %.1f%%" % accuracy(test_prediction.eval(), test_labels))  

运行结果如下:
Initialized
Minibatch loss at step 0: 16.076256
Minibatch accuracy: 14.1%
Validation accuracy: 17.9%
Minibatch loss at step 500: 1.690020
Minibatch accuracy: 72.7%
Validation accuracy: 75.1%
Minibatch loss at step 1000: 1.430756
Minibatch accuracy: 77.3%
Validation accuracy: 76.1%
Minibatch loss at step 1500: 1.065795
Minibatch accuracy: 81.2%
Validation accuracy: 77.0%
Minibatch loss at step 2000: 1.248749
Minibatch accuracy: 75.0%
Validation accuracy: 77.3%
Minibatch loss at step 2500: 0.934266
Minibatch accuracy: 81.2%
Validation accuracy: 78.1%
Minibatch loss at step 3000: 1.047278
Minibatch accuracy: 76.6%
Validation accuracy: 78.4%
Test accuracy: 85.4%


现在我们加入一层1024节点的隐含层,并使用rectified linear units神经单元,随后利用S.G.D进行训练看看效果。
当然结果肯定会有所提升。

[python]
view plain
copy
print?





batch_size = 128  
hiden_layer_node_num = 1024  
  
graph = tf.Graph()  
with graph.as_default():  
    # input                                                                                                             -----------------------------------------1  
    tf_train_dataset = tf.placeholder(tf.float32, shape=(batch_size, image_size * image_size))  
    tf_train_labels = tf.placeholder(tf.float32, shape=(batch_size, num_labels))  
      
    tf_valid_dataset = tf.constant(valid_dataset)  
    tf_test_dataset = tf.constant(test_dataset)  
    
    # Variables.                                                                                                       ------------------------------------------2  
    weights1 = tf.Variable(tf.truncated_normal([image_size * image_size, hiden_layer_node_num]))  
    biases1 = tf.Variable(tf.zeros([hiden_layer_node_num]))  
      
    # input layer output (batch_size, hiden_layer_node_num)  
    weights2 = tf.Variable(tf.truncated_normal([hiden_layer_node_num, num_labels]))  
    biases2 = tf.Variable(tf.zeros([num_labels]))  
      
    
    # Training computation.                                                                                  ------------------------------------------3  
    logits = tf.matmul(tf.nn.relu(tf.matmul(tf_train_dataset, weights1) + biases1), weights2) + biases2  
    loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits, tf_train_labels))  
    
  # Optimizer.                                                                                                       -------------------------------------------4  
    optimizer = tf.train.GradientDescentOptimizer(0.5).minimize(loss)  
    
    # Predictions for the training, validation, and test data.                            --------------------------------------------5  
    train_prediction = tf.nn.softmax(logits)  
    valid_prediction = tf.nn.softmax(tf.matmul(tf.nn.relu(tf.matmul(tf_valid_dataset, weights1) + biases1), weights2) + biases2)  
    test_prediction = tf.nn.softmax(tf.matmul(tf.nn.relu(tf.matmul(tf_test_dataset, weights1) + biases1), weights2) + biases2)  
num_steps = 3001  
  
with tf.Session(graph=graph) as session:  
    tf.initialize_all_variables().run()  
    print("Initialized")  
    for step in range(num_steps):  
    # Pick an offset within the training data, which has been randomized.  
    # Note: we could use better randomization across epochs.  
        offset = (step * batch_size) % (train_labels.shape[0] - batch_size)  
    # Generate a minibatch.  
        batch_data = train_dataset[offset:(offset + batch_size), :]  
        batch_labels = train_labels[offset:(offset + batch_size), :]  
    # Prepare a dictionary telling the session where to feed the minibatch.  
    # The key of the dictionary is the placeholder node of the graph to be fed,  
    # and the value is the numpy array to feed to it.  
        #  传递值到tf的命名空间  
        feed_dict = {tf_train_dataset : batch_data, tf_train_labels : batch_labels}  
        _, l, predictions = session.run([optimizer, loss, train_prediction], feed_dict=feed_dict)  
        if (step % 500 == 0):  
            print("Minibatch loss at step %d: %f" % (step, l))  
            print("Minibatch accuracy: %.1f%%" % accuracy(predictions, batch_labels))  
            print("Validation accuracy: %.1f%%" % accuracy(valid_prediction.eval(), valid_labels))  
    print("Test accuracy: %.1f%%" % accuracy(test_prediction.eval(), test_labels))  

运行结果如下:
Initialized
Minibatch loss at step 0: 379.534973
Minibatch accuracy: 8.6%
Validation accuracy: 21.7%
Minibatch loss at step 500: 12.951815
Minibatch accuracy: 86.7%
Validation accuracy: 80.8%
Minibatch loss at step 1000: 9.569818
Minibatch accuracy: 82.8%
Validation accuracy: 80.9%
Minibatch loss at step 1500: 7.165316
Minibatch accuracy: 84.4%
Validation accuracy: 78.8%
Minibatch loss at step 2000: 10.387121
Minibatch accuracy: 78.9%
Validation accuracy: 80.8%
Minibatch loss at step 2500: 3.324355
Minibatch accuracy: 80.5%
Validation accuracy: 80.8%
Minibatch loss at step 3000: 4.396149
Minibatch accuracy: 89.8%
Validation accuracy: 81.3%
Test accuracy: 88.9%

测试结果正确率达到了88.9%

这样一个简单的神经网络就搭建好了。
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: 
相关文章推荐