您的位置:首页 > 编程语言 > Java开发

java线程池介绍和使用说明

2017-02-27 18:12 621 查看
1、线程池简介:

    多线程技术主要解决处理器单元内多个线程执行的问题,它可以显著减少处理器单元的闲置时间,增加处理器单元的吞吐能力。    

    假设一个服务器完成一项任务所需时间为:T1 创建线程时间,T2 在线程中执行任务的时间,T3 销毁线程时间。

    如果:T1 + T3 远大于 T2,则可以采用线程池,以提高服务器性能。

                一个线程池包括以下四个基本组成部分:

                1、线程池管理器(ThreadPool):用于创建并管理线程池,包括 创建线程池,销毁线程池,添加新任务;

                2、工作线程(PoolWorker):线程池中线程,在没有任务时处于等待状态,可以循环的执行任务;

                3、任务接口(Task):每个任务必须实现的接口,以供工作线程调度任务的执行,它主要规定了任务的入口,任务执行完后的收尾工作,任务的执行状态等;

                4、任务队列(taskQueue):用于存放没有处理的任务。提供一种缓冲机制。

                

    线程池技术正是关注如何缩短或调整T1,T3时间的技术,从而提高服务器程序性能的。它把T1,T3分别安排在服务器程序的启动和结束的时间段或者一些空闲的时间段,这样在服务器程序处理客户请求时,不会有T1,T3的开销了。

    线程池不仅调整T1,T3产生的时间段,而且它还显著减少了创建线程的数目,看一个例子:

    假设一个服务器一天要处理50000个请求,并且每个请求需要一个单独的线程完成。在线程池中,线程数一般是固定的,所以产生线程总数不会超过线程池中线程的数目,而如果服务器不利用线程池来处理这些请求则线程总数为50000。一般线程池大小是远小于50000。所以利用线程池的服务器程序不会为了创建50000而在处理请求时浪费时间,从而提高效率。

    代码实现中并没有实现任务接口,而是把Runnable对象加入到线程池管理器(ThreadPool),然后剩下的事情就由线程池管理器(ThreadPool)来完成了

 

[java] view
plaincopy

package mine.util.thread;  

  

import java.util.LinkedList;  

import java.util.List;  

  

/** 

 * 线程池类,线程管理器:创建线程,执行任务,销毁线程,获取线程基本信息 

 */  

public final class ThreadPool {  

    // 线程池中默认线程的个数为5  

    private static int worker_num = 5;  

    // 工作线程  

    private WorkThread[] workThrads;  

    // 未处理的任务  

    private static volatile int finished_task = 0;  

    // 任务队列,作为一个缓冲,List线程不安全  

    private List<Runnable> taskQueue = new LinkedList<Runnable>();  

    private static ThreadPool threadPool;  

  

    // 创建具有默认线程个数的线程池  

    private ThreadPool() {  

        this(5);  

    }  

  

    // 创建线程池,worker_num为线程池中工作线程的个数  

    private ThreadPool(int worker_num) {  

        ThreadPool.worker_num = worker_num;  

        workThrads = new WorkThread[worker_num];  

        for (int i = 0; i < worker_num; i++) {  

            workThrads[i] = new WorkThread();  

            workThrads[i].start();// 开启线程池中的线程  

        }  

    }  

  

    // 单态模式,获得一个默认线程个数的线程池  

    public static ThreadPool getThreadPool() {  

        return getThreadPool(ThreadPool.worker_num);  

    }  

  

    // 单态模式,获得一个指定线程个数的线程池,worker_num(>0)为线程池中工作线程的个数  

    // worker_num<=0创建默认的工作线程个数  

    public static ThreadPool getThreadPool(int worker_num1) {  

        if (worker_num1 <= 0)  

            worker_num1 = ThreadPool.worker_num;  

        if (threadPool == null)  

            threadPool = new ThreadPool(worker_num1);  

        return threadPool;  

    }  

  

    // 执行任务,其实只是把任务加入任务队列,什么时候执行有线程池管理器觉定  

    public void execute(Runnable task) {  

        synchronized (taskQueue) {  

            taskQueue.add(task);  

            taskQueue.notify();  

        }  

    }  

  

    // 批量执行任务,其实只是把任务加入任务队列,什么时候执行有线程池管理器觉定  

    public void execute(Runnable[] task) {  

        synchronized (taskQueue) {  

            for (Runnable t : task)  

                taskQueue.add(t);  

            taskQueue.notify();  

        }  

    }  

  

    // 批量执行任务,其实只是把任务加入任务队列,什么时候执行有线程池管理器觉定  

    public void execute(List<Runnable> task) {  

        synchronized (taskQueue) {  

            for (Runnable t : task)  

                taskQueue.add(t);  

            taskQueue.notify();  

        }  

    }  

  

    // 销毁线程池,该方法保证在所有任务都完成的情况下才销毁所有线程,否则等待任务完成才销毁  

    public void destroy() {  

        while (!taskQueue.isEmpty()) {// 如果还有任务没执行完成,就先睡会吧  

            try {  

                Thread.sleep(10);  

            } catch (InterruptedException e) {  

                e.printStackTrace();  

            }  

        }  

        // 工作线程停止工作,且置为null  

        for (int i = 0; i < worker_num; i++) {  

            workThrads[i].stopWorker();  

            workThrads[i] = null;  

        }  

        threadPool=null;  

        taskQueue.clear();// 清空任务队列  

    }  

  

    // 返回工作线程的个数  

    public int getWorkThreadNumber() {  

        return worker_num;  

    }  

  

    // 返回已完成任务的个数,这里的已完成是只出了任务队列的任务个数,可能该任务并没有实际执行完成  

    public int getFinishedTasknumber() {  

        return finished_task;  

    }  

  

    // 返回任务队列的长度,即还没处理的任务个数  

    public int getWaitTasknumber() {  

        return taskQueue.size();  

    }  

  

    // 覆盖toString方法,返回线程池信息:工作线程个数和已完成任务个数  

    @Override  

    public String toString() {  

        return "WorkThread number:" + worker_num + "  finished task number:"  

                + finished_task + "  wait task number:" + getWaitTasknumber();  

    }  

  

    /** 

     * 内部类,工作线程 

     */  

    private class WorkThread extends Thread {  

        // 该工作线程是否有效,用于结束该工作线程  

        private boolean isRunning = true;  

  

        /* 

         * 关键所在啊,如果任务队列不空,则取出任务执行,若任务队列空,则等待 

         */  

        @Override  

        public void run() {  

            Runnable r = null;  

            while (isRunning) {// 注意,若线程无效则自然结束run方法,该线程就没用了  

                synchronized (taskQueue) {  

                    while (isRunning && taskQueue.isEmpty()) {// 队列为空  

                        try {  

                            taskQueue.wait(20);  

                        } catch (InterruptedException e) {  

                            e.printStackTrace();  

                        }  

                    }  

                    if (!taskQueue.isEmpty())  

                        r = taskQueue.remove(0);// 取出任务  

                }  

                if (r != null) {  

                    r.run();// 执行任务  

                }  

                finished_task++;  

                r = null;  

            }  

        }  

  

        // 停止工作,让该线程自然执行完run方法,自然结束  

        public void stopWorker() {  

            isRunning = false;  

        }  

    }  

}  

 

测试代码:

[java] view
plaincopy

package mine.util.thread;  

  

//测试线程池  

public class TestThreadPool {  

    public static void main(String[] args) {  

        // 创建3个线程的线程池  

        ThreadPool t = ThreadPool.getThreadPool(3);  

        t.execute(new Runnable[] { new Task(), new Task(), new Task() });  

        t.execute(new Runnable[] { new Task(), new Task(), new Task() });  

        System.out.println(t);  

        t.destroy();// 所有线程都执行完成才destory  

        System.out.println(t);  

    }  

  

    // 任务类  

    static class Task implements Runnable {  

        private static volatile int i = 1;  

  

        @Override  

        public void run() {// 执行任务  

            System.out.println("任务 " + (i++) + " 完成");  

        }  

    }  

}  

 

运行结果:

WorkThread number:3  finished task number:0  wait task number:6

任务 1 完成

任务 2 完成

任务 3 完成

任务 4 完成

任务 5 完成

任务 6 完成

WorkThread number:3  finished task number:6  wait task number:0

分析:由于并没有任务接口,传入的可以是自定义的任何任务,所以线程池并不能准确的判断该任务是否真正的已经完成(真正完成该任务是这个任务的run方法执行完毕),只能知道该任务已经出了任务队列,正在执行或者已经完成。

2、Java类库中提供的线程池简介:

     java提供的线程池更加强大,相信理解线程池的工作原理,看类库中的线程池就不会感到陌生了。





==================================================================================================

Java线程池使用说明


一简介

线程的使用在java中占有极其重要的地位,在jdk1.4极其之前的jdk版本中,关于线程池的使用是极其简陋的。在jdk1.5之后这一情况有了很大的改观。Jdk1.5之后加入了java.util.concurrent包,这个包中主要介绍java中线程以及线程池的使用。为我们在开发中处理线程的问题提供了非常大的帮助。


二:线程池

线程池的作用:

线程池作用就是限制系统中执行线程的数量。

     根据系统的环境情况,可以自动或手动设置线程数量,达到运行的最佳效果;少了浪费了系统资源,多了造成系统拥挤效率不高。用线程池控制线程数量,其他线程排队等候。一个任务执行完毕,再从队列的中取最前面的任务开始执行。若队列中没有等待进程,线程池的这一资源处于等待。当一个新任务需要运行时,如果线程池中有等待的工作线程,就可以开始运行了;否则进入等待队列。

为什么要用线程池:

1.减少了创建和销毁线程的次数,每个工作线程都可以被重复利用,可执行多个任务。

2.可以根据系统的承受能力,调整线程池中工作线线程的数目,防止因为消耗过多的内存,而把服务器累趴下(每个线程需要大约1MB内存,线程开的越多,消耗的内存也就越大,最后死机)。

Java里面线程池的顶级接口是Executor,但是严格意义上讲Executor并不是一个线程池,而只是一个执行线程的工具。真正的线程池接口是ExecutorService。

比较重要的几个类:
ExecutorService
真正的线程池接口。
ScheduledExecutorService
能和Timer/TimerTask类似,解决那些需要任务重复执行的问题。
ThreadPoolExecutor
ExecutorService的默认实现。
ScheduledThreadPoolExecutor
继承ThreadPoolExecutor的ScheduledExecutorService接口实现,周期性任务调度的类实现。
要配置一个线程池是比较复杂的,尤其是对于线程池的原理不是很清楚的情况下,很有可能配置的线程池不是较优的,因此在Executors类里面提供了一些静态工厂,生成一些常用的线程池。

1. newSingleThreadExecutor

创建一个单线程的线程池。这个线程池只有一个线程在工作,也就是相当于单线程串行执行所有任务。如果这个唯一的线程因为异常结束,那么会有一个新的线程来替代它。此线程池保证所有任务的执行顺序按照任务的提交顺序执行。

2.newFixedThreadPool

创建固定大小的线程池。每次提交一个任务就创建一个线程,直到线程达到线程池的最大大小。线程池的大小一旦达到最大值就会保持不变,如果某个线程因为执行异常而结束,那么线程池会补充一个新线程。

3. newCachedThreadPool

创建一个可缓存的线程池。如果线程池的大小超过了处理任务所需要的线程,

那么就会回收部分空闲(60秒不执行任务)的线程,当任务数增加时,此线程池又可以智能的添加新线程来处理任务。此线程池不会对线程池大小做限制,线程池大小完全依赖于操作系统(或者说JVM)能够创建的最大线程大小。

4.newScheduledThreadPool

创建一个大小无限的线程池。此线程池支持定时以及周期性执行任务的需求。

原文链接:http://blog.csdn.net/sd0902/article/details/8395677
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: