您的位置:首页 > 编程语言

RANSAC(随机采样一致算法)原理及openCV代码实现

2017-01-16 18:30 344 查看
《RANSAC(随机采样一致算法)原理及openCV代码实现》

原文: http://www.lai18.com/content/1046939.html

本文转自:http://blog.csdn.net/yihaizhiyan/article/details/5973729

http://blog.csdn.net/Sway_2012/article/details/37765765

http://blog.csdn.net/zouwen198317/article/details/38494149

1.什么是RANSAC?

RANSAC是RANdom SAmple Consensus(随机抽样一致性)的缩写。它是从一个观察数据集合中,估计模型参数(模型拟合)的迭代方法。它是一种随机的不确定算法,每次运算求出的结果可能不相同,但总能给出一个合理的结果,为了提高概率必须提高迭代次数。

2.算法详解

给定两个点p1与p2的坐标,确定这两点所构成的直线,要求对于输入的任意点p3,都可以判断它是否在该直线上。初中解析几何知识告诉我们,判断一个点在直线上,只需其与直线上任意两点点斜率都相同即可。实际操作当中,往往会先根据已知的两点算出直线的表达式(点斜式、截距式等等),然后通过向量计算即可方便地判断p3是否在该直线上。 

生产实践中的数据往往会有一定的偏差。例如我们知道两个变量X与Y之间呈线性关系,Y=aX+b,我们想确定参数a与b的具体值。通过实验,可以得到一组X与Y的测试值。虽然理论上两个未知数的方程只需要两组值即可确认,但由于系统误差的原因,任意取两点算出的a与b的值都不尽相同。我们希望的是,最后计算得出的理论模型与测试值的误差最小。大学的高等数学课程中,详细阐述了最小二乘法的思想。通过计算最小均方差关于参数a、b的偏导数为零时的值。事实上,在很多情况下,最小二乘法都是线性回归的代名词。 

遗憾的是,最小二乘法只适合与误差较小的情况。试想一下这种情况,假使需要从一个噪音较大的数据集中提取模型(比方说只有20%的数据时符合模型的)时,最小二乘法就显得力不从心了。例如下图,肉眼可以很轻易地看出一条直线(模式),但算法却找错了。 

RANSAC算法的输入是一组观测数据(往往含有较大的噪声或无效点),一个用于解释观测数据的参数化模型以及一些可信的参数。RANSAC通过反复选择数据中的一组随机子集来达成目标。被选取的子集被假设为局内点,并用下述方法进行验证: 

有一个模型适应于假设的局内点,即所有的未知参数都能从假设的局内点计算得出。
用1中得到的模型去测试所有的其它数据,如果某个点适用于估计的模型,认为它也是局内点。
如果有足够多的点被归类为假设的局内点,那么估计的模型就足够合理。
然后,用所有假设的局内点去重新估计模型(譬如使用最小二乘法),因为它仅仅被初始的假设局内点估计过。
最后,通过估计局内点与模型的错误率来评估模型。
上述过程被重复执行固定的次数,每次产生的模型要么因为局内点太少而被舍弃,要么因为比现有的模型更好而被选用。

整个过程可参考下图: 

3.代码实现

随机一致性采样RANSAC是一种鲁棒的模型拟合算法,能够从有外点的数据中拟合准确的模型。

RANSAC过程中用到的参数

N-- 拟合模型所需要的最少的样本个数

K--算法的迭代次数

t--用于判断数据是否是内点

d--判定模型是否符合使用于数据集,也就是判断是否是好的模型

RANSAC算法过程

1 for K 次迭代

2 从数据中均匀随机采样N个点

3 利用采样的N个点拟合你个模型

4 for 对于除采样点外的每一个样本点

5 利用t检测样本点到模型的距离,如果小于t则认为是一致,否则认为是外点

6 end

7 如果有d或者更多的一致点,则认为拟合的模型是好的

8 end

9 使用拟合误差作为标准,选择最好的拟合模型

迭代次数的计算

假设 r = 内点个数/所有点的个数

则:

p0 = pow(r, N) 表示采样的N个点全为内点,也就是是一次有效采样的概率

p1 = 1 - pow(r, N) 表示采样的N个点中至少有一个外点,即一次无效采样的概率

p2 = pow(p1, K) 表示K次无效采样的概率

假设p表示K次采样中至少一次采样是有效采样,则有1-p = pow(p1, K), 两边取对数

则有 K = log(1- p )/log(1-p1).

附一份来自google 的RANSAC的代码框架

[cpp] 
view plaincopyprint?

#ifndef FVISION_RANSAC_H_ 
#define FVISION_RANSAC_H_ 

#include <fvision/utils/random_utils.h> 
#include <fvision/utils/misc.h> 

#include <vector> 
#include <iostream> 
#include <cassert> 

namespace fvision { 

class RANSAC_SamplesNumber { 
public: 
RANSAC_SamplesNumber(int modelSampleSize) { 
this->s = modelSampleSize; 
this->p = 0.99; 

~RANSAC_SamplesNumber(void) {} 

public: 
long calcN(int inliersNumber, int samplesNumber) { 
double e = 1 - (double)inliersNumber / samplesNumber; 
//cout<<"e: "<<e<<endl; 
if (e > 0.9) e = 0.9; 
//cout<<"pow: "<<pow((1 - e), s)<<endl; 
//cout<<log(1 - pow((1 - e), s))<<endl; 
long N = (long)(log(1 - p) / log(1 - pow((1 - e), s))); 
if (N < 0) return (long)1000000000; 
else return N; 


private: 
int s; //samples size for fitting a model 
double p; //probability that at least one of the random samples if free from outliers 
//usually 0.99 
}; 

//fit a model to a set of samples 
template <typename M, typename S> 
class GenericModelCalculator { 
public: 
typedef std::vector<S> Samples; 
virtual M compute(const Samples& samples) = 0; 

virtual ~GenericModelCalculator<M, S>() {} 

//the model calculator may only use a subset of the samples for computing 
//default return empty for both 
virtual const std::vector<int>& getInlierIndices() const { return defaultInlierIndices; }; 
virtual const std::vector<int>& getOutlierIndices() const { return defaultOutlierIndices; }; 

// if the subclass has a threshold parameter, it need to override the following three functions 
// this is used for algorithms which have a normalization step on input samples 
virtual bool hasThreshold() const { return false; } 
virtual void setThreshold(double threshold) {} 
virtual double getThreshold() const { return 0; } 

protected: 
std::vector<int> defaultInlierIndices; 
std::vector<int> defaultOutlierIndices; 
}; 

//evaluate a model to samples 
//using a threshold to distinguish inliers and outliers 
template <typename M, typename S> 
class GenericErrorCaclculator { 
public: 
virtual ~GenericErrorCaclculator<M, S>() {} 

typedef std::vector<S> Samples; 

virtual double compute(const M& model, const S& sample) const = 0; 

double computeAverage(const M& model, const Samples& samples) const { 
int n = (int)samples.size(); 
if (n == 0) return 0; 
double sum = 0; 
for (int i = 0; i < n; i++) { 
sum += compute(model, samples[i]); 

return sum / n; 


double computeInlierAverage(const M& model, const Samples& samples) const { 
int n = (int)samples.size(); 
if (n == 0) return 0; 
double sum = 0; 
double error = 0; 
int inlierNum = 0; 
for (int i = 0; i < n; i++) { 
error = compute(model, samples[i]); 
if (error <= threshold) { 
sum += error; 
inlierNum++; 


if (inlierNum == 0) return 1000000; 
return sum / inlierNum; 


public: 

/** set a threshold for classify inliers and outliers 
*/ 
void setThreshold(double v) { threshold = v; } 

double getThreshold() const { return threshold; } 

/** classify all samples to inliers and outliers 

*/ 
void classify(const M& model, const Samples& samples, Samples& inliers, Samples& outliers) const { 
inliers.clear(); 
outliers.clear(); 
Samples::const_iterator iter = samples.begin(); 
for (; iter != samples.end(); ++iter) { 
if (isInlier(model, *iter)) inliers.push_back(*iter); 
else outliers.push_back(*iter); 



/** classify all samples to inliers and outliers, output indices 

*/ 
void classify(const M& model, const Samples& samples, std::vector<int>& inlierIndices, std::vector<int>& outlierIndices) const { 
inlierIndices.clear(); 
outlierIndices.clear(); 
Samples::const_iterator iter = samples.begin(); 
int i = 0; 
for (; iter != samples.end(); ++iter, ++i) { 
if (isInlier(model, *iter)) inlierIndices.push_back(i); 
else outlierIndices.push_back(i); 



/** classify all samples to inliers and outliers 

*/ 
void classify(const M& model, const Samples& samples, 
std::vector<int>& inlierIndices, std::vector<int>& outlierIndices, 
Samples& inliers, Samples& outliers) const { 

inliers.clear(); 
outliers.clear(); 
inlierIndices.clear(); 
outlierIndices.clear(); 
Samples::const_iterator iter = samples.begin(); 
int i = 0; 
for (; iter != samples.end(); ++iter, ++i) { 
if (isInlier(model, *iter)) { 
inliers.push_back(*iter); 
inlierIndices.push_back(i); 

else { 
outliers.push_back(*iter); 
outlierIndices.push_back(i); 




int calcInliersNumber(const M& model, const Samples& samples) const { 
int n = 0; 
for (int i = 0; i < (int)samples.size(); i++) { 
if (isInlier(model, samples[i])) ++n; 

return n; 


bool isInlier(const M& model, const S& sample) const { 
return (compute(model, sample) <= threshold); 


private: 
double threshold; 
}; 

/** generic RANSAC framework 
* make use of a model calculator and an error calculator 
* M is the model type, need to support copy assignment operator and default constructor 
* S is the sample type. 

* Interface: 
* M compute(samples); input a set of samples, output a model. 
* after compute, inliers and outliers can be retrieved 

*/ 
template <typename M, typename S> 
class Ransac : public GenericModelCalculator<M, S> { 
public: 
typedef std::vector<S> Samples; 

/** Constructor 

* @param pmc a GenericModelCalculator object 
* @param modelSampleSize how much samples are used to fit a model 
* @param pec a GenericErrorCaclculator object 
*/ 
Ransac(GenericModelCalculator<M, S>* pmc, int modelSampleSize, GenericErrorCaclculator<M, S>* pec) { 
this->pmc = pmc; 
this->modelSampleSize = modelSampleSize; 
this->pec = pec; 
this->maxSampleCount = 500; 
this->minInliersNum = 1000000; 

this->verbose = false; 


const GenericErrorCaclculator<M, S>* getErrorCalculator() const { return pec; } 

virtual ~Ransac() { 
delete pmc; 
delete pec; 


void setMaxSampleCount(int n) { 
this->maxSampleCount = n; 


void setMinInliersNum(int n) { 
this->minInliersNum = n; 


virtual bool hasThreshold() const { return true; } 

virtual void setThreshold(double threshold) { 
pec->setThreshold(threshold); 


virtual double getThreshold() const { 
return pec->getThreshold(); 


public: 
/** Given samples, compute a model that has most inliers. Assume the samples size is larger or equal than model sample size 
* inliers, outliers, inlierIndices and outlierIndices are stored 

*/ 
M compute(const Samples& samples) { 
clear(); 

int pointsNumber = (int)samples.size(); 

assert(pointsNumber >= modelSampleSize); 

long N = 100000; 
int sampleCount = 0; 
RANSAC_SamplesNumber ransac(modelSampleSize); 

M bestModel; 
int maxInliersNumber = 0; 

bool stop = false; 
while (sampleCount < N && sampleCount < maxSampleCount && !stop) { 

Samples nsamples; 
randomlySampleN(samples, nsamples, modelSampleSize); 

M sampleModel = pmc->compute(nsamples); 
if (maxInliersNumber == 0) bestModel = sampleModel; //init bestModel 

int inliersNumber = pec->calcInliersNumber(sampleModel, samples); 
if (verbose) std::cout<<"inliers number: "<<inliersNumber<<std::endl; 

if (inliersNumber > maxInliersNumber) { 
bestModel = sampleModel; 
maxInliersNumber = inliersNumber; 
N = ransac.calcN(inliersNumber, pointsNumber); 
if (maxInliersNumber > minInliersNum) stop = true; 


if (verbose) std::cout<<"N: "<<N<<std::endl; 

sampleCount ++; 


if (verbose) std::cout<<"sampleCount: "<<sampleCount<<std::endl; 

finalModel = computeUntilConverge(bestModel, maxInliersNumber, samples); 

pec->classify(finalModel, samples, inlierIndices, outlierIndices, inliers, outliers); 

inliersRate = (double)inliers.size() / samples.size(); 

return finalModel; 


const Samples& getInliers() const { return inliers; } 
const Samples& getOutliers() const { return outliers; } 

const std::vector<int>& getInlierIndices() const { return inlierIndices; } 
const std::vector<int>& getOutlierIndices() const { return outlierIndices; } 

double getInliersAverageError() const { 
return pec->computeAverage(finalModel, inliers); 


double getInliersRate() const { 
return inliersRate; 


void setVerbose(bool v) { 
verbose = v; 


private: 
void randomlySampleN(const Samples& samples, Samples& nsamples, int sampleSize) { 
std::vector<int> is = ranis((int)samples.size(), sampleSize); 
for (int i = 0; i < sampleSize; i++) { 
nsamples.push_back(samples[is[i]]); 



/** from initial model, iterate to find the best model. 

*/ 
M computeUntilConverge(M initModel, int initInliersNum, const Samples& samples) { 
if (verbose) { 
std::cout<<"iterate until converge...."<<std::endl; 
std::cout<<"init inliers number: "<<initInliersNum<<std::endl; 


M bestModel = initModel; 
M newModel = initModel; 

int lastInliersNum = initInliersNum; 

Samples newInliers, newOutliers; 
pec->classify(initModel, samples, newInliers, newOutliers); 
double lastInlierAverageError = pec->computeAverage(initModel, newInliers); 

if (verbose) std::cout<<"init inlier average error: "<<lastInlierAverageError<<std::endl; 

while (true && (int)newInliers.size() >= modelSampleSize) { 

//update new model with new inliers, the new model does not necessarily have more inliers 
newModel = pmc->compute(newInliers); 

pec->classify(newModel, samples, newInliers, newOutliers); 

int newInliersNum = (int)newInliers.size(); 
double newInlierAverageError = pec->computeAverage(newModel, newInliers); 

if (verbose) { 
std::cout<<"new inliers number: "<<newInliersNum<<std::endl; 
std::cout<<"new inlier average error: "<<newInlierAverageError<<std::endl; 

if (newInliersNum < lastInliersNum) break; 
if (newInliersNum == lastInliersNum && newInlierAverageError >= lastInlierAverageError) break; 

//update best model with the model has more inliers 
bestModel = newModel; 

lastInliersNum = newInliersNum; 
lastInlierAverageError = newInlierAverageError; 


return bestModel; 


void clear() { 
inliers.clear(); 
outliers.clear(); 
inlierIndices.clear(); 
outlierIndices.clear(); 


private: 
GenericModelCalculator<M, S>* pmc; 
GenericErrorCaclculator<M, S>* pec; 
int modelSampleSize; 

int maxSampleCount; 
int minInliersNum; 

M finalModel; 

Samples inliers; 
Samples outliers; 

std::vector<int> inlierIndices; 
std::vector<int> outlierIndices; 

double inliersRate; 

private: 
bool verbose; 

}; 


#endif // FVISION_RANSAC_H_ 

实例2

#include <math.h> 
#include "LineParamEstimator.h" 

LineParamEstimator::LineParamEstimator(double delta) : m_deltaSquared(delta*delta) {} 
/*****************************************************************************/ 
/* 
* Compute the line parameters [n_x,n_y,a_x,a_y] 
* 通过输入的两点来确定所在直线,采用法线向量的方式来表示,以兼容平行或垂直的情况 
* 其中n_x,n_y为归一化后,与原点构成的法线向量,a_x,a_y为直线上任意一点 
*/ 
void LineParamEstimator::estimate(std::vector<Point2D *> &data, 
std::vector<double> ¶meters) 

parameters.clear(); 
if(data.size()<2) 
return; 
double nx = data[1]->y - data[0]->y; 
double ny = data[0]->x - data[1]->x;// 原始直线的斜率为K,则法线的斜率为-1/k 
double norm = sqrt(nx*nx + ny*ny); 

parameters.push_back(nx/norm); 
parameters.push_back(ny/norm); 
parameters.push_back(data[0]->x); 
parameters.push_back(data[0]->y); 

/*****************************************************************************/ 
/* 
* Compute the line parameters [n_x,n_y,a_x,a_y] 
* 使用最小二乘法,从输入点中拟合出确定直线模型的所需参量 
*/ 
void LineParamEstimator::leastSquaresEstimate(std::vector<Point2D *> &data, 
std::vector<double> ¶meters) 

double meanX, meanY, nx, ny, norm; 
double covMat11, covMat12, covMat21, covMat22; // The entries of the symmetric covarinace matrix 
int i, dataSize = data.size(); 

parameters.clear(); 
if(data.size()<2) 
return; 

meanX = meanY = 0.0; 
covMat11 = covMat12 = covMat21 = covMat22 = 0; 
for(i=0; i<dataSize; i++) { 
meanX +=data[i]->x; 
meanY +=data[i]->y; 

covMat11 +=data[i]->x * data[i]->x; 
covMat12 +=data[i]->x * data[i]->y; 
covMat22 +=data[i]->y * data[i]->y; 


meanX/=dataSize; 
meanY/=dataSize; 

covMat11 -= dataSize*meanX*meanX; 
covMat12 -= dataSize*meanX*meanY; 
covMat22 -= dataSize*meanY*meanY; 
covMat21 = covMat12; 

if(covMat11<1e-12) { 
nx = 1.0; 
ny = 0.0; 

else { //lamda1 is the largest eigen-value of the covariance matrix 
//and is used to compute the eigne-vector corresponding to the smallest 
//eigenvalue, which isn't computed explicitly. 
double lamda1 = (covMat11 + covMat22 + sqrt((covMat11-covMat22)*(covMat11-covMat22) + 4*covMat12*covMat12)) / 2.0; 
nx = -covMat12; 
ny = lamda1 - covMat22; 
norm = sqrt(nx*nx + ny*ny); 
nx/=norm; 
ny/=norm; 

parameters.push_back(nx); 
parameters.push_back(ny); 
parameters.push_back(meanX); 
parameters.push_back(meanY); 

/*****************************************************************************/ 
/* 
* Given the line parameters [n_x,n_y,a_x,a_y] check if 
* [n_x, n_y] dot [data.x-a_x, data.y-a_y] < m_delta 
* 通过与已知法线的点乘结果,确定待测点与已知直线的匹配程度;结果越小则越符合,为 
* 零则表明点在直线上 
*/ 
bool LineParamEstimator::agree(std::vector<double> ¶meters, Point2D &data) 

double signedDistance = parameters[0]*(data.x-parameters[2]) + parameters[1]*(data.y-parameters[3]); 
return ((signedDistance*signedDistance) < m_deltaSquared); 

#include <math.h>
#include "LineParamEstimator.h"

LineParamEstimator::LineParamEstimator(double delta) : m_deltaSquared(delta*delta) {}
/*****************************************************************************/
/*
* Compute the line parameters  [n_x,n_y,a_x,a_y]
* 通过输入的两点来确定所在直线,采用法线向量的方式来表示,以兼容平行或垂直的情况
* 其中n_x,n_y为归一化后,与原点构成的法线向量,a_x,a_y为直线上任意一点
*/
void LineParamEstimator::estimate(std::vector<Point2D *> &data,
std::vector<double> ¶meters)
{
parameters.clear();
if(data.size()<2)
return;
double nx = data[1]->y - data[0]->y;
double ny = data[0]->x - data[1]->x;// 原始直线的斜率为K,则法线的斜率为-1/k
double norm = sqrt(nx*nx + ny*ny);

parameters.push_back(nx/norm);
parameters.push_back(ny/norm);
parameters.push_back(data[0]->x);
parameters.push_back(data[0]->y);
}
/*****************************************************************************/
/*
* Compute the line parameters  [n_x,n_y,a_x,a_y]
* 使用最小二乘法,从输入点中拟合出确定直线模型的所需参量
*/
void LineParamEstimator::leastSquaresEstimate(std::vector<Point2D *> &data,
std::vector<double> ¶meters)
{
double meanX, meanY, nx, ny, norm;
double covMat11, covMat12, covMat21, covMat22; // The entries of the symmetric covarinace matrix
int i, dataSize = data.size();

parameters.clear();
if(data.size()<2)
return;

meanX = meanY = 0.0;
covMat11 = covMat12 = covMat21 = covMat22 = 0;
for(i=0; i<dataSize; i++) {
meanX +=data[i]->x;
meanY +=data[i]->y;

covMat11	+=data[i]->x * data[i]->x;
covMat12	+=data[i]->x * data[i]->y;
covMat22	+=data[i]->y * data[i]->y;
}

meanX/=dataSize;
meanY/=dataSize;

covMat11 -= dataSize*meanX*meanX;
covMat12 -= dataSize*meanX*meanY;
covMat22 -= dataSize*meanY*meanY;
covMat21 = covMat12;

if(covMat11<1e-12) {
nx = 1.0;
ny = 0.0;
}
else {	    //lamda1 is the largest eigen-value of the covariance matrix
//and is used to compute the eigne-vector corresponding to the smallest
//eigenvalue, which isn't computed explicitly.
double lamda1 = (covMat11 + covMat22 + sqrt((covMat11-covMat22)*(covMat11-covMat22) + 4*covMat12*covMat12)) / 2.0;
nx = -covMat12;
ny = lamda1 - covMat22;
norm = sqrt(nx*nx + ny*ny);
nx/=norm;
ny/=norm;
}
parameters.push_back(nx);
parameters.push_back(ny);
parameters.push_back(meanX);
parameters.push_back(meanY);
}
/*****************************************************************************/
/*
* Given the line parameters  [n_x,n_y,a_x,a_y] check if
* [n_x, n_y] dot [data.x-a_x, data.y-a_y] < m_delta
* 通过与已知法线的点乘结果,确定待测点与已知直线的匹配程度;结果越小则越符合,为
* 零则表明点在直线上
*/
bool LineParamEstimator::agree(std::vector<double> ¶meters, Point2D &data)
{
double signedDistance = parameters[0]*(data.x-parameters[2]) + parameters[1]*(data.y-parameters[3]);
return ((signedDistance*signedDistance) < m_deltaSquared);
}


RANSAC寻找匹配的代码如下:

[cpp] 
view plaincopyprint?





/*****************************************************************************/ 
template<class T, class S> 
double Ransac<T,S>::compute(std::vector<S> ¶meters, 
ParameterEsitmator<T,S> *paramEstimator , 
std::vector<T> &data, 
int numForEstimate) 

std::vector<T *> leastSquaresEstimateData; 
int numDataObjects = data.size(); 
int numVotesForBest = -1; 
int *arr = new int[numForEstimate];// numForEstimate表示拟合模型所需要的最少点数,对本例的直线来说,该值为2 
short *curVotes = new short[numDataObjects]; //one if data[i] agrees with the current model, otherwise zero 
short *bestVotes = new short[numDataObjects]; //one if data[i] agrees with the best model, otherwise zero 

//there are less data objects than the minimum required for an exact fit 
if(numDataObjects < numForEstimate) 
return 0; 
// 计算所有可能的直线,寻找其中误差最小的解。对于100点的直线拟合来说,大约需要100*99*0.5=4950次运算,复杂度无疑是庞大的。一般采用随机选取子集的方式。 
computeAllChoices(paramEstimator,data,numForEstimate, 
bestVotes, curVotes, numVotesForBest, 0, data.size(), numForEstimate, 0, arr); 

//compute the least squares estimate using the largest sub set 
for(int j=0; j<numDataObjects; j++) { 
if(bestVotes[j]) 
leastSquaresEstimateData.push_back(&(data[j])); 

// 对局内点再次用最小二乘法拟合出模型 
paramEstimator->leastSquaresEstimate(leastSquaresEstimateData,parameters); 

delete [] arr; 
delete [] bestVotes; 
delete [] curVotes; 

return (double)leastSquaresEstimateData.size()/(double)numDataObjects; 
}
 
相关文章推荐
大型网站的灵魂——性能
http://www.lai18.com/content/318116.html

RSA,DSA等加解密算法介绍
http://www.lai18.com/content/321599.html

权限项目总结(一)权限设计
http://www.lai18.com/content/409780.html

快速排序里的学问:随机化快排
http://www.lai18.com/content/423495.html

快速排序里的学问:枢纽元选择与算法效率
http://www.lai18.com/content/423496.html

快速排序里的学问:霍尔快排的实现
http://www.lai18.com/content/423497.html

快速排序里的学问:霍尔与快速排序
http://www.lai18.com/content/423498.html

快速排序里的学问:快速排序的过程
http://www.lai18.com/content/423499.html

快速排序里的学问:信息熵
http://www.lai18.com/content/423501.html

快速排序里的学问:再看看称球问题
http://www.lai18.com/content/423502.html

快速排序里的学问:从猜数字开始
http://www.lai18.com/content/423503.html

漫谈递归:从汇编看尾递归的优化
http://www.lai18.com/content/423517.html

漫谈递归:PHP里的尾递归及其优化
http://www.lai18.com/content/423518.html

漫谈递归:补充一些Continuation的知识
http://www.lai18.com/content/423519.html

漫谈递归:尾递归与CPS
http://www.lai18.com/content/423520.html

漫谈递归:从斐波那契开始了解尾递归
http://www.lai18.com/content/423521.html
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签:  算法 opencv