您的位置:首页 > 编程语言 > Java开发

JDK动态代理源码解析

2016-11-15 23:34 603 查看
分析版本jdk1.8

在分析jdk动态代理之前,先来了解java WeakReference弱引用的使用。运行期创建目标对象的代理非常耗时,使用缓存来存储生成的代理类显得尤为重要。jdk动态代理使用弱引用指向cache中的代理类,以便代理类对象能够被GC回收。

在java中,当一个对象O被创建时,它被放在Heap里,当GC运行的时候,如果发现没有任何引用指向O,O就会被回收以腾出内存空间,或者说,一个对象被回收,必须满足两个条件:1)没有任何引用指向它;2)GC被运行。在现实情况写代码的时候, 我们往往通过把所有指向某个对象的referece置空来保证这个对象在下次GC运行的时候被回收 (可以用java -verbose:gc来观察gc的行为)。

Object c = new Car();
c=null;
但是, 手动置空对象对于程序员来说, 是一件繁琐且违背自动回收的理念的.  对于简单的情况, 手动置空是不需要程序员来做的, 因为在java中, 对于简单对象, 当调用它的方法执行完毕后, 指向它的引用会被从stack中popup, 所以他就能在下一次GC执行时被回收了.

但是, 也有特殊例外. 当使用cache的时候, 由于cache的对象正是程序运行需要的, 那么只要程序正在运行, cache中的引用就不会被GC给(或者说, cache中的reference拥有了和主程序一样的life cycle). 那么随着cache中的reference越来越多, GC无法回收的object也越来越多, 无法被自动回收. 当这些object需要被回收时, 回收这些object的任务只有交给程序编写者了. 然而这却违背了GC的本质(自动回收可以回收的objects).所以, java中引入了weak
reference. 相对于前面举例中的strong reference:

Object c = new Car(); //只要c还指向car object, car object就不会被回收
当一个对象仅仅被weak reference指向, 而没有任何其他strong reference指向的时候, 如果GC运行, 那么这个对象就会被回收. weak reference的语法是:

WeakReference<Car> weakCar = new WeakReference(Car)(car);


当要获得weak reference引用的object时, 首先需要判断它是否已经被回收:

weakCar.get();
 如果此方法为空, 那么说明weakCar指向的对象已经被回收了,下面来看一个例子:
package weakreference;
/**
* @author ywchen
*/
public class Car {
private double price;
private String colour;

public Car(double price, String colour){
this.price = price;
this.colour = colour;
}
public double getPrice() {
return price;
}
public void setPrice(double price) {
this.price = price;
}
public String getColour() {
return colour;
}
public void setColour(String colour) {
this.colour = colour;
}

public String toString(){
return colour +"car costs $"+price;
}
}
package weakreference;

import java.lang.ref.WeakReference;

/**
* @author ywchen
*/
public class TestWeakReference {
public static void main(String[] args) {
Car car = new Car(22000,"silver");
WeakReference<Car> weakCar = new WeakReference<Car>(car);
int i=0;
while(true){
if(weakCar.get()!=null){
i++;
System.out.println("Object is alive for "+i+" loops - "+weakCar);
}else{
System.out.println("Object has been collected.");
break;
}
}
}
}


在上例中, 程序运行一段时间后, 程序打印出"Object has been collected." 说明, weak reference指向的对象的被回收了.

ReferenceQueue

在weak reference指向的对象被回收后, weak reference本身其实也就没有用了. java提供了一个ReferenceQueue来保存这些所指向的对象已经被回收的reference. 用法是在定义WeakReference的时候将一个ReferenceQueue的对象作为参数传入构造函数.

jdk动态代理

面向对象编程(OOP)有一些弊端,为多个不具有继承关系的对象引入同一个公共行为,例如日志、安全监测等,需要在每个对象里引入公共行为,导致程序中产生大量重复代码。不便于维护。所以就有了一个面向对象编程的补充,即面向切面编程(AOP),AOP所关注的是横向,OOP关注的是纵向。AOP的实现,可采用JDK动态代理、CGLIB代理。

JDK动态代理:其代理对象必须是某个接口的实现,它是通过在运行期间创建一个接口的实现来完成目标对象的代理。

CBLIB代理:实现原理类似于JDK动态代理,它在运行期间生成的代理对象是针对目标类扩展的子类。CGLIB是高效的代码生成包,底层依靠ASM(开源的字节码编辑类库)操作字节码实现,性能比JDK强。

jdk动态代理实现示例

1. 新建委托类

/**
* 目标对象实现的接口,用JDK来生成代理对象一定要实现一个接口
* @author yawenchen
* @since 2016-11-15
*
*/
public interface UserService {

/**
* 目标方法
*/
public abstract void add();

}
/**
* 目标对象
* @author yawenchen
* @since 2016-11-15
*
*/
public class UserServiceImpl implements UserService {

/* (non-Javadoc)
* @see dynamic.proxy.UserService#add()
*/
public void add() {
System.out.println("--------------------add---------------");
}
}
UserService 是一个接口,UserServiceImpl 接口的实现类,也称委托类。动态代理要求代理对象必须是接口的实现类。因此UserServiceImpl 实现了UserService 。

2. 实现InvocationHandlerj接口

import java.lang.reflect.InvocationHandler;
import java.lang.reflect.Method;
import java.lang.reflect.Proxy;

/**
* 实现自己的InvocationHandler
* @author ywchen
* @since 2016-11-15
*
*/
public class MyInvocationHandler implements InvocationHandler {

// 目标对象
private Object target;

/**
* 构造方法
* @param target 目标对象
*/
public MyInvocationHandler(Object target) {
super();
this.target = target;
}

/**
* 执行目标对象的方法
*/
public Object invoke(Object proxy, Method method, Object[] args) throws Throwable {

// 在目标对象的方法执行之前简单的打印一下
System.out.println("------------------before------------------");

// 执行目标对象的方法
Object result = method.invoke(target, args);

// 在目标对象的方法执行之后简单的打印一下
System.out.println("-------------------after------------------");

return result;
}

/**
* 获取目标对象的代理对象
* @return 代理对象
*/
public Object getProxy() {
return Proxy.newProxyInstance(Thread.currentThread().getContextClassLoader(),
target.getClass().getInterfaces(), this);
}
}
target属性,表示代理的目标对象。InvocationHandler是负责连接代理对象与目标对象的自定义中间类MyInvocationHandler必须实现的接口,只有一个方法。

public Object invoke(Object proxy, Method method, Object[] args)

参数说明:Proxy表示通过Proxy.newProxyInstance()生成的代理类对象。Method表示目标对象被调用的方法。Args表示目标对象被调用方法的输入参数。

3. 通过Proxy类静态函数生成代理对象

public class ProxyTest {
public static void main(String[] args) {
//实例化目标对象
UserService userService  = new UserSericeImpl();
//实例化InvocationHander
MyInvocationHandler invocationHandler = new MyInvocationHandler(userService);
//根据目标对象生成代理对象
UserService proxy = (UserService)invocationHandler.getProxy();
//调用代理对象的方法
proxy.add();
}
}


执行结果

------------------before------------------ 

--------------------add--------------- 

-------------------after------------------ 

动态代理原理

/**
* loader :类加载器
* interfaces:目标对象实现的接口
* h:InvocationHandler的实现类
*/
public static Object newProxyInstance(ClassLoader loader,
Class<?>[] interfaces,
InvocationHandler h)
throws IllegalArgumentException
{
Objects.requireNonNull(h);

final Class<?>[] intfs = interfaces.clone();
final SecurityManager sm = System.getSecurityManager();
if (sm != null) {
checkProxyAccess(Reflection.getCallerClass(), loader, intfs);
}

/*
* Look up or generate the designated proxy class.从缓存中查找或生成目标对象的代理类
*/
Class<?> cl = getProxyClass0(loader, intfs);

/*
* Invoke its constructor with the designated invocation handler.
*/
try {
if (sm != null) {
checkNewProxyPermission(Reflection.getCallerClass(), cl);
}
//调用代理对象的构造函数(代理对象的构造函数$Proxy0(InvocationHandler h),通过字节码反编译可以查看生成的代理类)
final Constructor<?> cons = cl.getConstructor(constructorParams);
final InvocationHandler ih = h;
if (!Modifier.isPublic(cl.getModifiers())) {
AccessController.doPrivileged(new PrivilegedAction<Void>() {
public Void run() {
cons.setAccessible(true);
return null;
}
});
}
//生成代理类的实例,并把MyInvocationHander的实例作为构造函数参数传入
return cons.newInstance(new Object[]{h});
} catch (IllegalAccessException|InstantiationException e) {
throw new InternalError(e.toString(), e);
} catch (InvocationTargetException e) {
Throwable t = e.getCause();
if (t instanceof RuntimeException) {
throw (RuntimeException) t;
} else {
throw new InternalError(t.toString(), t);
}
} catch (NoSuchMethodException e) {
throw new InternalError(e.toString(), e);
}
}


进到getProxyClass0方法
private static Class<?> getProxyClass0(ClassLoader loader,
Class<?>... interfaces) {
if (interfaces.length > 65535) {
throw new IllegalArgumentException("interface limit exceeded");
}

// If the proxy class defined by the given loader implementing
// the given interfaces exists, this will simply return the cached copy;
// otherwise, it will create the proxy class via the ProxyClassFactory
return proxyClassCache.get(loader, interfaces);
}


proxyClassCache为WeakCache的实例化对象,在Proxy类中定义,表示代理类的缓存。定义如下:

private static final WeakCache<ClassLoader, Class<?>[], Class<?>>   proxyClassCache = new WeakCache<>(new KeyFactory(), new ProxyClassFactory());


KeyFactory、ProxyClassFactory是WeakCache的内部静态类。实现了BiFunction接口。WeakCache实例化时作为构造函数参数传入,继承关系如下:



主要的代码如下:

public interface BiFunction<T, U, R> {
R apply(T t, U u);
}


private static final class ProxyClassFactory
implements BiFunction<ClassLoader, Class<?>[], Class<?>>
{
// prefix for all proxy class names 代理类的前缀
private static final String proxyClassNamePrefix = "$Proxy";

// next number to use for generation of unique proxy class names
//生成唯一的代理类名称
private static final AtomicLong nextUniqueNumber = new AtomicLong();

@Override
public Class<?> apply(ClassLoader loader, Class<?>[] interfaces) {

Map<Class<?>, Boolean> interfaceSet = new IdentityHashMap<>(interfaces.length);
for (Class<?> intf : interfaces) {
/*
* Verify that the class loader resolves the name of this
* interface to the same Class object.
*/
//确保接口的类对象与类加载器加载的类对象相同,且由同一个加载器加载。《深入理解java虚拟机》提到,类加载器虽然只用于实现类的加载动作,但在java程序起的作用远不止于类的加载。对于任何一个类,都需要由加载它的的类加载器和这个类本身一同确立其在java虚拟机中的唯一性,每一个类加载器,都拥有一个独立的类名称空间,通俗点,比较两个类是否相等,只有在这两个类是由同一个类加载器加载的前提下才有意义,否则,即使这两个类来源于同一个class文件,被同一个虚拟机加载,只要加载它们的类加载器不同,那这两个类就必定不相等。interfaceClass = Class.forName(intf.getName(), false, loader);验证类是否相等,实现原理如上所述。

Class<?> interfaceClass = null;
try {
interfaceClass = Class.forName(intf.getName(), false, loader);
} catch (ClassNotFoundException e) {
}
if (interfaceClass != intf) {
throw new IllegalArgumentException(
intf + " is not visible from class loader");
}
/*
* Verify that the Class object actually represents an
* interface. 验证类对象表示的是接口
*/
if (!interfaceClass.isInterface()) {
throw new IllegalArgumentException(
interfaceClass.getName() + " is not an interface");
}
/*
* Verify that this interface is not a duplicate. 验证接口未重复
*/
if (interfaceSet.put(interfaceClass, Boolean.TRUE) != null) {
throw new IllegalArgumentException(
"repeated interface: " + interfaceClass.getName());
}
}

String proxyPkg = null;     // package to define proxy class in定义待生成的代理类所在包名
int accessFlags = Modifier.PUBLIC | Modifier.FINAL;

/*
* Record the package of a non-public proxy interface so that the
* proxy class will be defined in the same package.  Verify that
* all non-public proxy interfaces are in the same package.非public修饰的代理接口,需要定义在相同的包中,如果非public修饰的接口不在相同包,会因访问权限的限制而无法访问。intf.getModifiers()返回的是一个整数,用不同的位开关表示接口中public/final修饰符的使用情况。
*/
for (Class<?> intf : interfaces) {
int flags = intf.getModifiers();
if (!Modifier.isPublic(flags)) {
accessFlags = Modifier.FINAL;
String name = intf.getName();
int n = name.lastIndexOf('.');
String pkg = ((n == -1) ? "" : name.substring(0, n + 1));
if (proxyPkg == null) {
proxyPkg = pkg;   //代理对象的包名,如com.aop
} else if (!pkg.equals(proxyPkg)) {
throw new IllegalArgumentException(
"non-public interfaces from different packages");
}
}
}

if (proxyPkg == null) {
// if no non-public proxy interfaces, use com.sun.proxy package
proxyPkg = ReflectUtil.PROXY_PACKAGE + ".";
}

/*
* Choose a name for the proxy class to generate.
*/
long num = nextUniqueNumber.getAndIncrement();
String proxyName = proxyPkg + proxyClassNamePrefix + num;

/*
* Generate the specified proxy class.
*生成目标对象的代理类的字节码,并保存到硬盘中。
*/
byte[] proxyClassFile = ProxyGenerator.generateProxyClass(
proxyName, interfaces, accessFlags);
try {
//返回代理类对象,将字节码加载到内存中
return defineClass0(loader, proxyName,
proxyClassFile, 0, proxyClassFile.length);
} catch (ClassFormatError e) {
/*
* A ClassFormatError here means that (barring bugs in the
* proxy class generation code) there was some other
* invalid aspect of the arguments supplied to the proxy
* class creation (such as virtual machine limitations
* exceeded).
*/
throw new IllegalArgumentException(e.toString());
}
}
}

/**
*映射接口数组到最后键的函数
* 接口数组映射到最优键对象上(如实例化Key1时,接口作为Key1的构造函数参数,保存到Key1中), 同时,Key1/Key2/KeyX继承了WeakReference弱引用类类,因此接口所在的类对象被弱引用
*/
private static final class KeyFactory
implements BiFunction<ClassLoader, Class<?>[], Object>
{
@Override
public Object apply(ClassLoader classLoader, Class<?>[] interfaces) {
switch (interfaces.length) {
case 1: return new Key1(interfaces[0]); // the most frequent
case 2: return new Key2(interfaces[0], interfaces[1]);
case 0: return key0;
default: return new KeyX(interfaces);
}
}
}


WeakCache类中定义的map变量如下:

private final ConcurrentMap<Object, ConcurrentMap<Object, Supplier<V>>> map = new ConcurrentHashMap<>();


双层map映射,第一层key为ClassLoader,第二层key为接口的弱引用对象,value为代理类的Class对象。怎么看出是弱引用的呢,value中存放的值是一个类,该类继承了弱引用类WeakReference,我们的代理类在对象实例化时,通过构造函数传入。为对象添加引用,可看WeakReference用法。

第一层是类加载器,第二层才是类对象,为什么不用一层,代理类对象作为键呢,这里就涉及到类加载器的使用。记住一点,类的唯一性是由类加载器和类本身共同决定的。

对Supplier接口,Factory类进行说明,接下来的代码中会用到。

调用proxyClassCache.get(loader, interfaces),进入WeakCache的get方法。代码如下:

public V get(K key, P parameter) {
Objects.requireNonNull(parameter);

expungeStaleEntries();
//refQueue的类型为ReferenceQueue,存放对象的弱引用,CacheKey继承了WeakReference,因此key(ClassLoader)所在对象被弱引用,对象的应用存放在队列refQueue中。
Object cacheKey = CacheKey.valueOf(key, refQueue);

// lazily install the 2nd level valuesMap for the particular cacheKey
//生成第一层key,从缓存中获取valuesMap,如果为空,则新建ConcurrentHashMap实例,把当前加载器和ConcurrentHashMap实例放到缓存中。
ConcurrentMap<Object, Supplier<V>> valuesMap = map.get(cacheKey);
if (valuesMap == null) {
ConcurrentMap<Object, Supplier<V>> oldValuesMap
= map.putIfAbsent(cacheKey,
valuesMap = new ConcurrentHashMap<>());
if (oldValuesMap != null) {
valuesMap = oldValuesMap;
}
}

// create subKey and retrieve the possible Supplier<V> stored by that
// subKey from valuesMap
//subKeyFactory是Proxy类的内部静态类KeyFactory的实例对象
//valueFactory是Proxy类的内容静态类ProxyClassFactory的实例对象
//subKeyFactory.apply(key, parameter)返回接口的弱引用对象。subKey,即接口的弱引用对象作为第二层映射的键
Object subKey = Objects.requireNonNull(subKeyFactory.apply(key, parameter));
Supplier<V> supplier = valuesMap.get(subKey);
Factory factory = null;

while (true) {
if (supplier != null) {
// supplier might be a Factory or a CacheValue<V> instance,supplier不为空,缓存中存在代理类
V value = supplier.get();
if (value != null) {  //value不为空,即代理类存在,将代理类返回。
return value;
}
}
// else no supplier in cache
// or a supplier that returned null (could be a cleared CacheValue
// or a Factory that wasn't successful in installing the CacheValue)

// lazily construct a Factory
if (factory == null) {
factory = new Factory(key, parameter, subKey, valuesMap);
}

if (supplier == null) {
supplier = valuesMap.putIfAbsent(subKey, factory);
if (supplier == null) {
// successfully installed Factory
supplier = factory;
}
// else retry with winning supplier
} else {
if (valuesMap.replace(subKey, supplier, factory)) {
// successfully replaced
// cleared CacheEntry / unsuccessful Factory
// with our Factory
supplier = factory;
} else {
// retry with current supplier
supplier = valuesMap.get(subKey);
}
}
}
}


上面执行流程中,主要的两个步骤为:

Object subKey = Objects.requireNonNull(subKeyFactory.apply(key, parameter)); subKey为接口对象的弱引用。 进入Proxy类的内部静态类KeyFactory,查看apply方法(本文前面提到的KeyFactory类)。

V value = supplier.get(); value为缓存中的代理类对象,Supplier是个接口,实现代码是在接口的实现类Factory中, 进入WeakCache类的内部类Factory,查看get方法。如下:

Supplier是接口

public interface Supplier<T> {

/**
* Gets a result.
*
* @return a result
*/
T get();
}
}


Factory是WeakCache的内部类, Factory实现了接口Supplier

private final class Factory implements Supplier<V> {

private final K key;
private final P parameter;
private final Object subKey;
private final ConcurrentMap<Object, Supplier<V>> valuesMap;

Factory(K key, P parameter, Object subKey,
ConcurrentMap<Object, Supplier<V>> valuesMap) {
this.key = key;
this.parameter = parameter;
this.subKey = subKey;
this.valuesMap = valuesMap;
}

@Override
public synchronized V get() { // serialize access
// re-check
Supplier<V> supplier = valuesMap.get(subKey);
if (supplier != this) {
// something changed while we were waiting:
// might be that we were replaced by a CacheValue
// or were removed because of failure ->
// return null to signal WeakCache.get() to retry
// the loop
return null;
}
// else still us (supplier == this)

// create new value
V value = null;
try {
//valueFactory.apply(key, parameter) 返回代理类对象,即Class对象。
//如果value不为空,说明缓存中已经存在代理类,可以直接返回。
//通过前面的判断,已经能确定缓存中存在代理类,否则,程序是走不到这里来的。
value = Objects.requireNonNull(valueFactory.apply(key, parameter));
} finally {
if (value == null) { // remove us on failure
valuesMap.remove(subKey, this);
}
}
// the only path to reach here is with non-null value
assert value != null;

// wrap value with CacheValue (WeakReference)
CacheValue<V> cacheValue = new CacheValue<>(value);

// try replacing us with CacheValue (this should always succeed)
if (valuesMap.replace(subKey, this, cacheValue)) {
// put also in reverseMap
reverseMap.put(cacheValue, Boolean.TRUE);
} else {
throw new AssertionError("Should not reach here");
}

// successfully replaced us with new CacheValue -> return the value
// wrapped by it
return value;
}
}

在Facotry类的get方法中,value是由valueFactory.apply(key, parameter)生成,返回代理类Class对象。具体的实现可在本文前面提到的ValueFactory中查看。

JDK动态代理实现原理

Java WeakReference的理解与使用


内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: