您的位置:首页 > 理论基础 > 计算机网络

机器学习实验(四):用tensorflow实现卷积神经网络识别人类活动

2016-11-15 22:36 1046 查看
声明:版权所有,转载请联系作者并注明出处  http://blog.csdn.net/u013719780?viewmode=contents

博主简介:风雪夜归子(英文名:Allen),机器学习算法攻城狮,喜爱钻研Meachine
Learning的黑科技,对Deep Learning和Artificial Intelligence充满兴趣,经常关注Kaggle数据挖掘竞赛平台,对数据、Machine Learning和Artificial Intelligence有兴趣的童鞋可以一起探讨哦,个人CSDN博客:http://blog.csdn.net/u013719780?viewmode=contents

在近几年,越来越多的用户在智能手机上安装加速度传感器等一些设备,这就为做一些应用需要收集相关的数据提供了方便。人类活动识别(human activity recognition (HAR))是其中的一个应用。对于HAR,有很多的方法可以去尝试,方法的performance很大程度上依赖于特征工程。传统的机器学习特征工程通常是手工完成(人肉工程),这需要拥有较好的专业领域知识,同时比较耗时间。神经网络特别是深度学习在object
recognition, machine translation, audio generation等取得了很大的成功,同样,深跌学习技术也可以应用到HAR上。
在本文中,我们将会看到如何将卷积神经网络技术应用到HAR问题上。


数据预处理

我们将会使用Wireless Sensor Data Mining (WISDM) lab发布的数据集Actitracker(http://www.cis.fordham.edu/wisdm/dataset.php) 这个数据集是在一个可以控制的实验环境中收集到的。数据集中包含6个活动类别,分别是jogging,
walking, ascending stairs, descending stairs, sitting and standing。 这个数据集关于activities(labels)分布如下图所示:



首先导入相应的库和函数reading, normalising and plotting数据集。

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from scipy import stats
import tensorflow as tf

%matplotlib inline
plt.style.use('ggplot')

def read_data(file_path):
column_names = ['user-id','activity','timestamp', 'x-axis', 'y-axis', 'z-axis']
data = pd.read_csv(file_path,header = None, names = column_names)
return data

def feature_normalize(dataset):
mu = np.mean(dataset,axis = 0)
sigma = np.std(dataset,axis = 0)
return (dataset - mu)/sigma

def plot_axis(ax, x, y, title):
ax.plot(x, y)
ax.set_title(title)
ax.xaxis.set_visible(False)
ax.set_ylim([min(y) - np.std(y), max(y) + np.std(y)])
ax.set_xlim([min(x), max(x)])
ax.grid(True)

def plot_activity(activity,data):
fig, (ax0, ax1, ax2) = plt.subplots(nrows = 3, figsize = (15, 10), sharex = True)
plot_axis(ax0, data['timestamp'], data['x-axis'], 'x-axis')
plot_axis(ax1, data['timestamp'], data['y-axis'], 'y-axis')
plot_axis(ax2, data['timestamp'], data['z-axis'], 'z-axis')
plt.subplots_adjust(hspace=0.2)
fig.suptitle(activity)
plt.subplots_adjust(top=0.90)
plt.show()


首先,读取数据集,然后normalise特征x-axis、y-axis、z-axis。

dataset = read_data('/Users/youwei.tan/Desktop/WISDM_ar_v1.1/WISDM_ar_v1.1_raw.txt')
dataset['x-axis'] = feature_normalize(dataset['x-axis'])
dataset['y-axis'] = feature_normalize(dataset['y-axis'])
dataset['z-axis'] = feature_normalize(dataset['z-axis'])


接下来可视化x-axis、y-axis、z-axis与时间的关系图。

for activity in np.unique(dataset["activity"]):
subset = dataset[dataset["activity"] == activity][:180]
plot_activity(activity,subset)








数据已经处理好啦,现在需要将数据转变成卷积神经网络模型所需要的数据形式。具体实现直接看代码:

def windows(data, size):
start = 0
while start < data.count():
yield start, start + size
start += (size / 2)

def segment_signal(data,window_size = 90):
segments = np.empty((0,window_size,3))
labels = np.empty((0))
for (start, end) in windows(data["timestamp"], window_size):
x = data["x-axis"][start:end]
y = data["y-axis"][start:end]
z = data["z-axis"][start:end]
if(len(dataset["timestamp"][start:end]) == window_size):
segments = np.vstack([segments,np.dstack([x,y,z])])
labels = np.append(labels,stats.mode(data["activity"][start:end])[0][0])
return segments, labels


segments, labels = segment_signal(dataset)
labels = np.asarray(pd.get_dummies(labels), dtype = np.int8)
reshaped_segments = segments.reshape(len(segments), 1,90, 3)


现在的数据已经是我们所期待的数据形式了,为了后面做交叉验证,需要将数据集分割为训练集和测试集。

train_test_split = np.random.rand(len(reshaped_segments)) < 0.70
train_x = reshaped_segments[train_test_split]
train_y = labels[train_test_split]
test_x = reshaped_segments[~train_test_split]
test_y = labels[~train_test_split]



卷积神经网络模型

CNN模型的结构如下图所示:



下面直接上代码:

input_height = 1
input_width = 90
num_labels = 6
num_channels = 3

batch_size = 10
kernel_size = 60
depth = 60
num_hidden = 1000

learning_rate = 0.0001
training_epochs = 5

total_batchs = reshaped_segments.shape[0] // batch_size

def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev = 0.1)
return tf.Variable(initial)

def bias_variable(shape):
initial = tf.constant(0.0, shape = shape)
return tf.Variable(initial)

def depthwise_conv2d(x, W):
return tf.nn.depthwise_conv2d(x,W, [1, 1, 1, 1], padding='VALID')

def apply_depthwise_conv(x,kernel_size,num_channels,depth):
weights = weight_variable([1, kernel_size, num_channels, depth])
biases = bias_variable([depth * num_channels])
return tf.nn.relu(tf.add(depthwise_conv2d(x, weights),biases))

def apply_max_pool(x,kernel_size,stride_size):
return tf.nn.max_pool(x, ksize=[1, 1, kernel_size, 1],
strides=[1, 1, stride_size, 1], padding='VALID')


X = tf.placeholder(tf.float32, shape=[None,input_height,input_width,num_channels])
Y = tf.placeholder(tf.float32, shape=[None,num_labels])

c = apply_depthwise_conv(X,kernel_size,num_channels,depth)
p = apply_max_pool(c,20,2)
c = apply_depthwise_conv(p,6,depth*num_channels,depth//10)

shape = c.get_shape().as_list()
c_flat = tf.reshape(c, [-1, shape[1] * shape[2] * shape[3]])

f_weights_l1 = weight_variable([shape[1] * shape[2] * depth * num_channels * (depth//10), num_hidden])
f_biases_l1 = bias_variable([num_hidden])
f = tf.nn.tanh(tf.add(tf.matmul(c_flat, f_weights_l1),f_biases_l1))

out_weights = weight_variable([num_hidden, num_labels])
out_biases = bias_variable([num_labels])
y_ = tf.nn.softmax(tf.matmul(f, out_weights) + out_biases)


loss = -tf.reduce_sum(Y * tf.log(y_))
optimizer = tf.train.GradientDescentOptimizer(learning_rate = learning_rate).minimize(loss)

correct_prediction = tf.equal(tf.argmax(y_,1), tf.argmax(Y,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))


cost_history = np.empty(shape=[1],dtype=float)

with tf.Session() as session:
tf.initialize_all_variables().run()
for epoch in range(training_epochs):
for b in range(total_batchs):
offset = (b * batch_size) % (train_y.shape[0] - batch_size)
batch_x = train_x[offset:(offset + batch_size), :, :, :]
batch_y = train_y[offset:(offset + batch_size), :]
_, c = session.run([optimizer, loss],feed_dict={X: batch_x, Y : batch_y})
cost_history = np.append(cost_history,c)
print "Epoch: ",epoch," Training Loss: ",c," Training Accuracy: ",
session.run(accuracy, feed_dict={X: train_x, Y: train_y})

print "Testing Accuracy:", session.run(accuracy, feed_dict={X: test_x, Y: test_y})
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
相关文章推荐