您的位置:首页 > 移动开发 > Objective-C

【目标检测】Object Detection Faster RCNN算法解析

2016-09-27 16:44 357 查看
Ren, Shaoqing, et al. “Faster R-CNN: Towards real-time object detection with region proposal networks.” 

Advances in Neural Information Processing Systems. 2015.

Faster
R-CNN: Towards real-time object detection with region proposal networks.

本文是继RCNN,Fast RCNN之后,目标检测界的领军人物Ross Girshick团队在2015年的又一力作。简单网络目标检测速度达到17fps,在PASCAL VOC上准确率为59.9%;复杂网络达到5fps,准确率78.8%。


思想

从RCNN到fast RCNN,再到本文的faster RCNN,目标检测的四个基本步骤(候选区域生成,特征提取,分类,位置精修)终于被统一到一个深度网络框架之内。所有计算没有重复,完全在GPU中完成,大大提高了运行速度。 



faster RCNN可以简单地看做“区域生成网络+fast RCNN“的系统,用区域生成网络代替fast RCNN中的Selective Search方法。本篇论文着重解决了这个系统中的三个问题: 

1. 如何设计区域生成网络 

2. 如何训练区域生成网络 

3. 如何让区域生成网络和fast RCNN网络共享特征提取网络


区域生成网络:结构

基本设想是:在提取好的特征图上,对所有可能的候选框进行判别。由于后续还有位置精修步骤,所以候选框实际比较稀疏。 




特征提取

原始特征提取(上图灰色方框)包含若干层conv+relu,直接套用ImageNet上常见的分类网络即可。本文试验了两种网络:5层的ZF,16层的VGG-16。

额外添加一个conv+relu层,输出51*39*256维特征(feature)。


候选区域(anchor)

特征可以看做一个尺度51*39的256通道图像,对于该图像的每一个位置,考虑9个可能的候选窗口:三种面积{1282,2562,5122}×三种比例{1:1,1:2,2:1}。这些候选窗口称为anchors。下图示出51*39个anchor中心,以及9种anchor示例。 



在整个faster RCNN算法中,有三种尺度。 
原图尺度:原始输入的大小。不受任何限制,不影响性能。 
归一化尺度:输入特征提取网络的大小,在测试时设置,源码中opts.test_scale=600。anchor在这个尺度上设定。这个参数和anchor的相对大小决定了想要检测的目标范围。 
网络输入尺度:输入特征检测网络的大小,在训练时设置,源码中为224*224。


窗口分类和位置精修

分类层(cls_score)输出每一个位置上,9个anchor属于前景和背景的概率;窗口回归层(bbox_pred)输出每一个位置上,9个anchor对应窗口应该平移缩放的参数。 

对于每一个位置来说,分类层从256维特征中输出属于前景和背景的概率;窗口回归层从256维特征中输出4个平移缩放参数。

就局部来说,这两层是全连接网络;就全局来说,由于网络在所有位置(共51*39个)的参数相同,所以实际用尺寸为1×1的卷积网络实现。

需要注意的是:并没有显式地提取任何候选窗口,完全使用网络自身完成判断和修正。


区域生成网络:训练


样本

考察训练集中的每张图像: 

a. 对每个标定的真值候选区域,与其重叠比例最大的anchor记为前景样本 

b. 对a)剩余的anchor,如果其与某个标定重叠比例大于0.7,记为前景样本;如果其与任意一个标定的重叠比例都小于0.3,记为背景样本 

c. 对a),b)剩余的anchor,弃去不用。 

d. 跨越图像边界的anchor,弃去不用


代价函数

同时最小化两种代价: 

a. 分类误差 

b. 前景样本的窗口位置偏差 


超参数

原始特征提取网络使用ImageNet的分类样本初始化,其余新增层随机初始化。 

每个mini-batch包含从一张图像中提取的256个anchor,前景背景样本1:1. 

前60K迭代,学习率0.001,后20K迭代,学习率0.0001。 

momentum设置为0.9,weight decay设置为0.0005。


共享特征

区域生成网络(RPN)和fast RCNN都需要一个原始特征提取网络(下图灰色方框)。这个网络使用ImageNet的分类库得到初始参数W0,但要如何精调参数,使其同时满足两方的需求呢?本文讲解了三种方法。 




轮流训练

a. 从W0开始,训练RPN。用RPN提取训练集上的候选区域 

b. 从W0开始,用候选区域训练Fast
RCNN,参数记为W1 

c. 从W1开始,训练RPN

具体操作时,仅执行两次迭代,并在训练时冻结了部分层。论文中的实验使用此方法。 


近似联合训练

直接在上图结构上训练。在backward计算梯度时,把提取的ROI区域当做固定值看待;在backward更新参数时,来自RPN和来自Fast RCNN的增量合并输入原始特征提取层。 

此方法和前方法效果类似,但能将训练时间减少20%-25%。公布的python代码中包含此方法。


联合训练

直接在上图结构上训练。但在backward计算梯度时,要考虑ROI区域的变化的影响。推导超出本文范畴,请参看15年NIP论文。


实验

除了开篇提到的基本性能外,还有一些值得注意的结论

与Selective Search方法(黑)相比,当每张图生成的候选区域从2000减少到300时,本文RPN方法(红蓝)的召回率下降不大。说明RPN方法的目的性更明确。 



使用更大的Microsoft COCO库训练,直接在PASCAL
VOC上测试,准确率提升6%。说明faster RCNN迁移性良好,没有over fitting。

内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
相关文章推荐