您的位置:首页 > 其它

LVS负载均衡集群服务搭建详解(一)

2016-09-15 22:49 691 查看
LVS概述
1.LVS:Linux Virtual Server

四层交换(路由):根据请求报文的目标IP和目标PORT将其转发至后端主机集群中的某台服务器(根据调度算法);

不能够实现应用层的负载均衡

lvs(又称ipvs)是基于内核中的防火墙netfilter实现

2.lvs集群术语:

vs:Virtual Server虚拟服务,可称为Director、Dispatcher分发器、Balancer负载均衡器
rs:Real Server真实服务器
CIP:Client IP客户端IP
VIP:Director Virtual IP等同于FIP(流动IP),负载均衡器虚拟IP
DIP:Director IP调度IP(第二张网卡IP地址)
RIP:Real Server IP真实服务器IP
3.LVS:ipvsadm/ipvs

(1)ipvsadm: CLI工具

用户空间的命令行工具,用于管理集群服务及集群服务上的RS等;# yum install -y ipvsadm

(2)ipvs:内核存在(CentOS默认支持)

工作于内核上的netfilterINPUT钩子之上的程序代码;其集群功能依赖于ipvsadm定义的集群服务器规则;

支持基于TCP、UDP、SCTP、AH、EST、AH_EST等协议的众多服务;

4.负载均衡集群中设计时的要点:

(1)session保持

session sticky (iphash):IP地址绑定,来源IP记录在ip hash表作统一调度

session cluster(multicast/broadcast/unicast):广播集群同步(复制)session,只适用于小规模场景

session server ():session服务器

(2)数据共享(提供一致性存储)

1) 共享存储;

NAS:Network Attached Storage (文件级别),网络附加存储,文件服务器

SAN:Storage Area Network (块级别),存储区域网络

DS:Distributed Storage,分布式春初

2) 数据同步:rsync … ...

LVS模型
1.lvs-nat:地址伪装模型

多目标的DNAT:通过将请求报文的目标地址和目标端口修改为挑选出某RS的RIP和PORT来实现;

客户端主机发起请求报文CIP指向VIP,通过内核的核心网卡间转发功能,VIP会将请求交给DIP进行调度,DIP根据设定的算法进行负载均衡给后端的RS主机的RIP,在这个过程中DIP调度功能会将目标IP地址重写为RIP。请求和返回请求读要调度DIP来进行转换操作。



(1)RIP和DIP应该使用私网地址,RS的网状应该指向DIP;

(2)请求和响应报文都要经由director转发;极高负载的场景中,Director可能会成为系统瓶颈(响应报文大);

(3) 支持端口映射(转发);

(4) VS必须为Linux,RS可以为任意操作系统;

(5)RS的RIP与Director的DIP必须在同一IP网络;

2.lvs-dr(direct routing直接路由):网关模型

通过修改请求报文的MAC地址进行转发;IP首部不会发生变化(源IP为CIP,目标IP始终为VIP)

客户端发起请求,经过层层路由到达离VS服务器最近的交换机,通过交换机转发给VS服务器,由VS服务器负载均衡转发请求给RS服务器。在此过程中VIP修改MAC地址调度请求给真实主机。在此过程中通过ARP协议在一个局域网中广播寻找真实主机的MAC地址。每个RS真实主机的网卡会一个别名地址VIP,实现全过程源地址为CIP,目标地址为VIP不变。调度基于寻找MAC。网关模型中的所有主机均要能与外网通信。这样RS主机就能够直接响应客户机。



(1)确保前端路由器将目标IP为VIP的请求报文一定会发送给Director;

解决方案:

1)静态绑定;

2)禁止RS响应VIP的ARP请求;

a) arptables上定义;

b) 修改各RS的内核参数,并把VIP配置在特定的接口上实现禁止其响应;

(2)RS的RIP可以使用私有地址,也可以使用公网地址;

RIP使用私有地址可以通过在之前加一个路由器的方式和外网通信,直接响应客户机

(3)RS跟Director必须在同一物理网络中;

(4)请求报文必须由Director调度,但响应报文必须不能经由Director;

(5) 不支持端口映射;

(6) 各RS可以使用大多数的操作系统;

3.lvs-tun(ip tunneling):IP隧道模型

转发方式:不修改请求报文的IP首部(源IP为CIP,目标IP为VIP),而是在原有的IP首部这外再次封装一个IP首部(源IP为DIP,目标IP为RIP);

(1)RIP,DIP,VIP全得是公网地址;

(2)RS的网关不能也不可能指向DIP;

(3)请求报文经由Director调度,但响应报文将直接发给CIP;

(4) 不支持端口映射;

(5)RS的OS必须支持IP隧道功能;

4.lvs-fullnat:完整模型(同时改变请求报文的源IP和目标IP)

通过同时修改请求报文的源IP地址(cip-->dip)和目标IP地址(vip--> rip)实现转发;

注意:前三种为标准类型,第四种为后添加类型,内核默认可能不支持,需自编译内核

(1)VIP是公网地址;RIP和DIP是私网地址,且可以不在同一IP网络中,但需要通过路由互相通信;

(2)RS收到的请求报文的源IP为DIP,因此其响应报文将发送给DIP;

(3)请求报文和响应报文都必须经由director;

(4) 支持端口映射;

(5) RS可使用任意OS;

LVS scheduler调度算法
1.静态方法:仅根据算法本身进行调度

(1)RR :round robin,轮询机制,依次分配请求,方式简单但时负载均衡的效果一般

(2)WRR :weighted rr,加权轮询,权重越大承担负载越大

(3)SH :source ip hash,源地址哈希,将来自同一个ip请求通过记录在ip hsash表中绑定在同一个服务器,实现session保持

缺点:调度粒度大,对负载均衡效果差;session黏性不同,连接时长保持不同

(4)DH :desination ip hash,目标地址哈希。能实现连接追踪,但不考虑负载均衡效果

正向web代理,负载均衡内网用户对互联网的请求;

Client--> Director --> Web Cache Server(正向代理)

2.动态方法:根据算法及各RS当前的负载状态进行评估

Overhead负载值,VS转发时记录每个RS的Active和Inactive数量(甚至权重)进行算法计算
Active活动链接值,当发起新请求后保持在ESTABLISHED状态时,仍有请求响应
Inactive非活动链接值,在ESTABLISHED状态时,尚未断开保持空闲等待状态
(1)LC:least connection,最少连接

Overhead=Active*256+Inactive

后端的RS谁的连接少就分发请求至那台RS,若overhead一样则自上而下轮询列表中的RS

(2)WLC:weighted least connection,加权最小连接

Overhead=(Active*256+Inactive)/weight,计算结果小的将为选中的下一跳RS服务器

缺点:当Overhead一样时,自上而下轮询响应,权重小的若在列表上方则其会响应

(3)SED:Shortest Expection Delay,最短期望延迟

Overhead=(Active+1)*256/weight

缺点:解决WLC问题,但时无法确保权重小的主机一定响应

(4)NQ:never Queue,永不排队,SED算法改进

RS权重大小排列,每台RS服务器先分配一个请求,其余的按照权重大小计算分配

(5)LBLC:Locality-Based LC,基于本地的最少连接,动态的 DH连接算法

(6)LBLCR:LBLC with Replication,带复制功能的LBLC

ipvsadm命令
1.管理集群服务:

ipvsadm -A|E -t|u|f service-address [-s scheduler][-p [timeout]] ipvsadm -D -t|u|f service-address

-A:添加 -E:修改 -D:删除 -t, tcp, vip:port TCP的ip和port -u, udp, vip:port UDP的ip和port -f, fwm, MARK 防火墙标记 -s scheduler:默认为WLC调度算法,可省; -p [timeout] :超出时长,持久连接相关,默认时长为300秒


2.管理集群服务上的RS:

ipvsadm-a|e -t|u|f service-address -rserver-address [-g|i|m] [-w weight] ipvsadm -d -t|u|f service-address -rserver-address

-a:添加一个RS -e:修改一个RS -d:删除一个RS server-address指的是rip[:port],端口可省表示与之前的service-address相同,只有nat模式支持端口映射才会使用 [-g|i|m] -g:GATEWAY (默认),lvs-dr模型 -i: IPIP, lvs-tun隧道模型 -m: MASQUERADE,lvs-nat模型


3.查看

ipvsadm -L|l[options] -n:numeric,数字格式显示地址和端口; -c:connection,显示ipvs连接; --stats:显示统计数据; --rate:速率 --exact:精确值,不经过单位换算的数值


4.清空规则:

ipvsadm -C


5.数器清零:

ipvsadm -Z [-t|u|f service-address]


6.保存和重载:

保存:

ipvsadm-S > /PATH/TO/SOME_RULE_FILE ipvsadm-save > /PATH/TO/SOME_RULE_FILE


重载:

ipvsadm -R < /PATH/FROM/SOME_RULE_FILE ipvsadm-restore< /PATH/FROM/SOME_RULE_FILE

注意:需要结合重定向一起使用,从自定义的规则文件中导入导出

附录(ipvsadm -h):

ipvsadm-A|E -t|u|f service-address [-s scheduler] [-p[timeout]] [-M netmask] [-b sched-flags] ipvsadm-D -t|u|f service-address ipvsadm-C ipvsadm-R ipvsadm-S [-n] ipvsadm-a|e -t|u|f service-address -r server-address [-g|i|m][-w weight] [-x upper] [-y lower] ipvsadm-d -t|u|f service-address -r server-address ipvsadm-L|l [options] ipvsadm-Z [-t|u|f service-address] ipvsadm--set tcp tcpfin udp ipvsadm-h



本文转载自:http://***/lvs-load-balancing...ervice-1.html

更多Linux干货请访问:http://***/

内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: