您的位置:首页 > 编程语言 > Java开发

Java 集合框架源码分析(五)——Vector

2016-08-15 16:01 696 查看

Vector介绍

Vector也是基于数组实现的,是一个动态数组,其容量能自动增长。

Vector是JDK1.0引入了,它的很多实现方法都加入了同步语句,因此是线程安全的(其实也只是相对安全,有些时候还是要加入同步语句来保证线程的安全),可以用于多线程环境。

Vector实现了Serializable接口,可以被序列化,Cloneable接口,能被克隆,实现了RandomAccess接口,支持快速随机访问。

Vector类层次



Vector源码分析

以下是Vector的源码,基于Sun JDK1.7版本,加入了较为详细的注释。

package java.util;
public class Vector<E>
extends AbstractList<E>
implements List<E>, RandomAccess, Cloneable, java.io.Serializable
{
// 保存Vector中数据的数组
protected Object[] elementData;

// 实际数据的数量
protected int elementCount;

// 容量增长系数
protected int capacityIncrement;

// Vector的序列版本号
private static final long serialVersionUID = -2767605614048989439L;

// 指定Vector"容量大小"和"增长系数"的构造函数
public Vector(int initialCapacity, int capacityIncrement) {
super();
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal Capacity: "+
initialCapacity);
this.elementData = new Object[initialCapacity];
this.capacityIncrement = capacityIncrement;
}

// 指定Vector容量大小的构造函数
public Vector(int initialCapacity) {
this(initialCapacity, 0);
}

// Vector构造函数。默认容量是10。
public Vector() {
this(10);
}

// 指定集合的Vector构造函数。
public Vector(Collection<? extends E> c) {
elementData = c.toArray();
elementCount = elementData.length;
// c.toArray might (incorrectly) not return Object[] (see 6260652)
if (elementData.getClass() != Object[].class)
elementData = Arrays.copyOf(elementData, elementCount, Object[].class);
}

// 将数组Vector的全部元素都拷贝到数组anArray中
public synchronized void copyInto(Object[] anArray) {
System.arraycopy(elementData, 0, anArray, 0, elementCount);
}

// 将当前容量值设为 =实际元素个数
public synchronized void trimToSize() {
modCount++;
int oldCapacity = elementData.length;
if (elementCount < oldCapacity) {
elementData = Arrays.copyOf(elementData, elementCount);
}
}

// 确定Vector的容量。
public synchronized void ensureCapacity(int minCapacity) {
if (minCapacity > 0) {
modCount++;
ensureCapacityHelper(minCapacity);
}
}

// 确认“Vector容量”的帮助函数
private void ensureCapacityHelper(int minCapacity) {
// overflow-conscious code
if (minCapacity - elementData.length > 0)
grow(minCapacity);
}

private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;

private void grow(int minCapacity) {
// overflow-conscious code
int oldCapacity = elementData.length;
int newCapacity = oldCapacity + ((capacityIncrement > 0) ?
capacityIncrement : oldCapacity);
if (newCapacity - minCapacity < 0)
newCapacity = minCapacity;
if (newCapacity - MAX_ARRAY_SIZE > 0)
newCapacity = hugeCapacity(minCapacity);
elementData = Arrays.copyOf(elementData, newCapacity);
}

private static int hugeCapacity(int minCapacity) {
if (minCapacity < 0) // overflow
throw new OutOfMemoryError();
return (minCapacity > MAX_ARRAY_SIZE) ?
Integer.MAX_VALUE :
MAX_ARRAY_SIZE;
}

public synchronized void setSize(int newSize) {
modCount++;
if (newSize > elementCount) {
ensureCapacityHelper(newSize);
} else {
for (int i = newSize ; i < elementCount ; i++) {
elementData[i] = null;
}
}
elementCount = newSize;
}

// 返回“Vector的总的容量”
public synchronized int capacity() {
return elementData.length;
}

// 返回“Vector的实际大小”,即Vector中元素个数
public synchronized int size() {
return elementCount;
}

// 判断Vector是否为空
public synchronized boolean isEmpty() {
return elementCount == 0;
}

// 返回“Vector中全部元素对应的Enumeration”
public Enumeration<E> elements() {
// 通过匿名类实现Enumeration
return new Enumeration<E>() {
int count = 0;
// 是否存在下一个元素
public boolean hasMoreElements() {
return count < elementCount;
}
// 获取下一个元素
public E nextElement() {
synchronized (Vector.this) {
if (count < elementCount) {
return elementData(count++);
}
}
throw new NoSuchElementException("Vector Enumeration");
}
};
}

// 返回Vector中是否包含对象(o)
public boolean contains(Object o) {
return indexOf(o, 0) >= 0;
}

// 返回Vector中是否包含对象(o)
public int indexOf(Object o) {
return indexOf(o, 0);
}

// 从index位置开始向后查找元素(o)。
// 若找到,则返回元素的索引值;否则,返回-1
public synchronized int indexOf(Object o, int index) {
if (o == null) {
// 若查找元素为null,则正向找出null元素,并返回它对应的序号
for (int i = index ; i < elementCount ; i++)
if (elementData[i]==null)
return i;
} else {
// 若查找元素不为null,则正向找出该元素,并返回它对应的序号
for (int i = index ; i < elementCount ; i++)
if (o.equals(elementData[i]))
return i;
}
return -1;
}

// 从后向前查找元素(o)。并返回元素的索引
public synchronized int lastIndexOf(Object o) {
return lastIndexOf(o, elementCount-1);
}

// 从后向前查找元素(o)。开始位置是从前向后的第index个数;
// 若找到,则返回元素的“索引值”;否则,返回-1。
public synchronized int lastIndexOf(Object o, int index) {
if (index >= elementCount)
throw new IndexOutOfBoundsException(index + " >= "+ elementCount);

if (o == null) {
// 若查找元素为null,则反向找出null元素,并返回它对应的序号
for (int i = index; i >= 0; i--)
if (elementData[i]==null)
return i;
} else {
// 若查找元素不为null,则反向找出该元素,并返回它对应的序号
for (int i = index; i >= 0; i--)
if (o.equals(elementData[i]))
return i;
}
return -1;
}

// 返回Vector中index位置的元素。
// 若index越界,则抛出异常
public synchronized E elementAt(int index) {
if (index >= elementCount) {
throw new ArrayIndexOutOfBoundsException(index + " >= " + elementCount);
}

return elementData(index);
}

// 获取Vector中的第一个元素。
// 若失败,则抛出异常!
public synchronized E firstElement() {
if (elementCount == 0) {
throw new NoSuchElementException();
}
return elementData(0);
}

// 获取Vector中的最后一个元素。
// 若失败,则抛出异常!
public synchronized E lastElement() {
if (elementCount == 0) {
throw new NoSuchElementException();
}
return elementData(elementCount - 1);
}

// 设置index位置的元素值为obj
public synchronized void setElementAt(E obj, int index) {
if (index >= elementCount) {
throw new ArrayIndexOutOfBoundsException(index + " >= " +
elementCount);
}
elementData[index] = obj;
}

// 删除index位置的元素
public synchronized void removeElementAt(int index) {
modCount++;
if (index >= elementCount) {
throw new ArrayIndexOutOfBoundsException(index + " >= " +
elementCount);
}
else if (index < 0) {
throw new ArrayIndexOutOfBoundsException(index);
}
int j = elementCount - index - 1;
if (j > 0) {
System.arraycopy(elementData, index + 1, elementData, index, j);
}
elementCount--;
elementData[elementCount] = null; /* to let gc do its work */
}

// 在index位置处插入元素(obj)
public synchronized void insertElementAt(E obj, int index) {
modCount++;
if (index > elementCount) {
throw new ArrayIndexOutOfBoundsException(index
+ " > " + elementCount);
}
ensureCapacityHelper(elementCount + 1);
System.arraycopy(elementData, index, elementData, index + 1, elementCount - index);
elementData[index] = obj;
elementCount++;
}

// 将“元素obj”添加到Vector末尾
public synchronized void addElement(E obj) {
modCount++;
ensureCapacityHelper(elementCount + 1);
elementData[elementCount++] = obj;
}

// 在Vector中查找并删除元素obj。
// 成功的话,返回true;否则,返回false。
public synchronized boolean removeElement(Object obj) {
modCount++;
int i = indexOf(obj);
if (i >= 0) {
removeElementAt(i);
return true;
}
return false;
}

// 删除Vector中的全部元素
public synchronized void removeAllElements() {
modCount++;
// Let gc do its work
for (int i = 0; i < elementCount; i++)
elementData[i] = null;

elementCount = 0;
}

// 克隆函数
public synchronized Object clone() {
try {
@SuppressWarnings("unchecked")
Vector<E> v = (Vector<E>) super.clone();
v.elementData = Arrays.copyOf(elementData, elementCount);
v.modCount = 0;
return v;
} catch (CloneNotSupportedException e) {
// this shouldn't happen, since we are Cloneable
throw new InternalError();
}
}

// 返回Object数组
public synchronized Object[] toArray() {
return Arrays.copyOf(elementData, elementCount);
}

// 返回Vector的模板数组。所谓模板数组,即可以将T设为任意的数据类型
@SuppressWarnings("unchecked")
public synchronized <T> T[] toArray(T[] a) {
// 若数组a的大小 < Vector的元素个数;
// 则新建一个T[]数组,数组大小是“Vector的元素个数”,并将“Vector”全部拷贝到新数组中
if (a.length < elementCount)
return (T[]) Arrays.copyOf(elementData, elementCount, a.getClass());
// 若数组a的大小 >= Vector的元素个数;
// 则将Vector的全部元素都拷贝到数组a中。
System.arraycopy(elementData, 0, a, 0, elementCount);

if (a.length > elementCount)
a[elementCount] = null;

return a;
}

// Positional Access Operations

@SuppressWarnings("unchecked")
E elementData(int index) {
return (E) elementData[index];
}

// 获取index位置的元素
public synchronized E get(int index) {
if (index >= elementCount)
throw new ArrayIndexOutOfBoundsException(index);

return elementData(index);
}

// 设置index位置的值为element。并返回index位置的原始值
public synchronized E set(int index, E element) {
if (index >= elementCount)
throw new ArrayIndexOutOfBoundsException(index);

E oldValue = elementData(index);
elementData[index] = element;
return oldValue;
}

// 将“元素e”添加到Vector最后。
public synchronized boolean add(E e) {
modCount++;
ensureCapacityHelper(elementCount + 1);
elementData[elementCount++] = e;
return true;
}

// 删除Vector中的元素o
public boolean remove(Object o) {
return removeElement(o);
}
// 在index位置添加元素element
public void add(int index, E element) {
insertElementAt(element, index);
}
// 删除index位置的元素,并返回index位置的原始值
public synchronized E remove(int index) {
modCount++;
if (index >= elementCount)
throw new ArrayIndexOutOfBoundsException(index);
E oldValue = elementData(index);

int numMoved = elementCount - index - 1;
if (numMoved > 0)
System.arraycopy(elementData, index+1, elementData, index,
numMoved);
elementData[--elementCount] = null; // Let gc do its work

return oldValue;
}

// 清空Vector
public void clear() {
removeAllElements();
}

// Bulk Operations

// 返回Vector是否包含集合c
public synchronized boolean containsAll(Collection<?> c) {
return super.containsAll(c);
}

// 将集合c添加到Vector中
public synchronized boolean addAll(Collection<? extends E> c) {
modCount++;
Object[] a = c.toArray();
int numNew = a.length;
ensureCapacityHelper(elementCount + numNew);
System.arraycopy(a, 0, elementData, elementCount, numNew);
elementCount += numNew;
return numNew != 0;
}

// 删除集合c的全部元素
public synchronized boolean removeAll(Collection<?> c) {
return super.removeAll(c);
}

// 删除“非集合c中的元素”
public synchronized boolean retainAll(Collection<?> c) {
return super.retainAll(c);
}

// 从index位置开始,将集合c添加到Vector中
public synchronized boolean addAll(int index, Collection<? extends E> c) {
modCount++;
if (index < 0 || index > elementCount)
throw new ArrayIndexOutOfBoundsException(index);

Object[] a = c.toArray();
int numNew = a.length;
ensureCapacityHelper(elementCount + numNew);

int numMoved = elementCount - index;
if (numMoved > 0)
System.arraycopy(elementData, index, elementData, index + numNew,
numMoved);

System.arraycopy(a, 0, elementData, index, numNew);
elementCount += numNew;
return numNew != 0;
}
// 返回两个对象是否相等
public synchronized boolean equals(Object o) {
return super.equals(o);
}

// 计算哈希值
public synchronized int hashCode() {
return super.hashCode();
}

// 调用父类的toString()
public synchronized String toString() {
return super.toString();
}

// 获取Vector中fromIndex(包括)到toIndex(不包括)的子集
public synchronized List<E> subList(int fromIndex, int toIndex) {
return Collections.synchronizedList(super.subList(fromIndex, toIndex),
this);
}

// 删除Vector中fromIndex到toIndex的元素
protected synchronized void removeRange(int fromIndex, int toIndex) {
modCount++;
int numMoved = elementCount - toIndex;
System.arraycopy(elementData, toIndex, elementData, fromIndex,
numMoved);

// Let gc do its work
int newElementCount = elementCount - (toIndex-fromIndex);
while (elementCount != newElementCount)
elementData[--elementCount] = null;
}

// java.io.Serializable的写入函数
private void writeObject(java.io.ObjectOutputStream s)
throws java.io.IOException {
final java.io.ObjectOutputStream.PutField fields = s.putFields();
final Object[] data;
synchronized (this) {
fields.put("capacityIncrement", capacityIncrement);
fields.put("elementCount", elementCount);
data = elementData.clone();
}
fields.put("elementData", data);
s.writeFields();
}

//返回从指定位置处开始的listIterator
public synchronized ListIterator<E> listIterator(int index) {
if (index < 0 || index > elementCount)
throw new IndexOutOfBoundsException("Index: "+index);
return new ListItr(index);
}

//返回listIterator
public synchronized ListIterator<E> listIterator() {
return new ListItr(0);
}

/**
* Returns an iterator over the elements in this list in proper sequence.
*
* <p>The returned iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
*
* @return an iterator over the elements in this list in proper sequence
*/
public synchronized Iterator<E> iterator() {
return new Itr();
}

/**
* An optimized version of AbstractList.Itr
*/
private class Itr implements Iterator<E> {
int cursor;       // index of next element to return
int lastRet = -1; // index of last element returned; -1 if no such
int expectedModCount = modCount;

public boolean hasNext() {
// Racy but within spec, since modifications are checked
// within or after synchronization in next/previous
return cursor != elementCount;
}

public E next() {
synchronized (Vector.this) {
checkForComodification();
int i = cursor;
if (i >= elementCount)
throw new NoSuchElementException();
cursor = i + 1;
return elementData(lastRet = i);
}
}

public void remove() {
if (lastRet == -1)
throw new IllegalStateException();
synchronized (Vector.this) {
checkForComodification();
Vector.this.remove(lastRet);
expectedModCount = modCount;
}
cursor = lastRet;
lastRet = -1;
}

final void checkForComodification() {
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
}
}

/**
* An optimized version of AbstractList.ListItr
*/
final class ListItr extends Itr implements ListIterator<E> {
ListItr(int index) {
super();
cursor = index;
}

public boolean hasPrevious() {
return cursor != 0;
}

public int nextIndex() {
return cursor;
}

public int previousIndex() {
return cursor - 1;
}

public E previous() {
synchronized (Vector.this) {
checkForComodification();
int i = cursor - 1;
if (i < 0)
throw new NoSuchElementException();
cursor = i;
return elementData(lastRet = i);
}
}

public void set(E e) {
if (lastRet == -1)
throw new IllegalStateException();
synchronized (Vector.this) {
checkForComodification();
Vector.this.set(lastRet, e);
}
}

public void add(E e) {
int i = cursor;
synchronized (Vector.this) {
checkForComodification();
Vector.this.add(i, e);
expectedModCount = modCount;
}
cursor = i + 1;
lastRet = -1;
}
}
}


重点分析

从上述源码可以看到,Vector总体与ArrayList类似,但还是有区别的,关于ArrayList的分析可以查看《Java 集合框架源码分析(一)——ArrayList》

相同点

Vector内部使用数组来保存元素。

Vector实现了RandomAccess, Cloneable, java.io.Serializable三个标记接口,表示它自身支持快速随机访问,克隆,序列化。

如果不指定容量大小,默认情况下,Vector容量为10,在JDk1.7中Vector最大容量为 Integer.MAX_VALUE - 8.

内部具备自动扩容机制,当容量不足时,会自动申请内存空间。

同样在查找给定元素索引值等的方法中,源码都将该元素的值分为null和不为null两种情况处理,Vector中也允许元素为null。

不同点

1 .并发性

很多方法都加入了synchronized同步语句,来保证线程安全。

2.扩容实现方案

Vector 具体的扩容最终会调用到grow方法。

private void grow(int minCapacity) {
// overflow-conscious code
int oldCapacity = elementData.length;
int newCapacity = oldCapacity + ((capacityIncrement > 0) ?
capacityIncrement : oldCapacity);
if (newCapacity - minCapacity < 0)
newCapacity = minCapacity;
if (newCapacity - MAX_ARRAY_SIZE > 0)
newCapacity = hugeCapacity(minCapacity);
elementData = Arrays.copyOf(elementData, newCapacity);
}


详细扩容过程:

当容量不足以容纳当前的元素个数时,就先看构造方法中传入的容量增长量参数CapacityIncrement是否为0,如果不为0,就设置新的容量为就容量加上容量增长量,如果为0,就设置新的容量为旧的容量的2倍,如果设置后的新容量还不够,则直接新容量设置为传入的参数(也就是所需的容量),而后同样用Arrays.copyof()方法将元素拷贝到新的数组。
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: