您的位置:首页 > 数据库

Spark-Sql源码解析之一 引言

2016-08-11 13:38 381 查看

1.1 Demo

以一个Spark-Sql的例子开始:

public class TestSparkSql {
public static void main(String[] args) {
Logger log = Logger.getLogger(TestSparkSql.class);
System.setProperty("javax.xml.parsers.DocumentBuilderFactory",
"com.sun.org.apache.xerces.internal.jaxp.DocumentBuilderFactoryImpl");
System.setProperty("javax.xml.parsers.SAXParserFactory",
"com.sun.org.apache.xerces.internal.jaxp.SAXParserFactoryImpl");
String sparkMaster = Configure.instance.get("sparkMaster");
String sparkJarAddress = Configure.instance.get("sparkJarAddress");
String sparkExecutorMemory = Configure.instance.get("sparkExecutorMemory");
String sparkCoresMax = Configure.instance.get("sparkCoresMax");
String sparkLocalDir = Configure.instance.get("sparkLocalDir");
log.info("initialize parameters");
log.info("sparkMaster:" + sparkMaster);
log.info("sparkJarAddress:" + sparkJarAddress);
log.info("sparkExecutorMemory:" + sparkExecutorMemory);
log.info("sparkCoresMax:" + sparkCoresMax);
log.info("sparkLocalDir:" + sparkLocalDir);
SparkConf sparkConf = new SparkConf().setAppName("dse load application in Java");
sparkConf.setMaster(sparkMaster);
if (!sparkJarAddress.isEmpty() && !sparkMaster.contains("local")) {
sparkConf.set("spark.executor.memory", sparkExecutorMemory); // 16g
sparkConf.set("spark.scheduler.mode", "FAIR");
sparkConf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer");
sparkConf.set("spark.kryo.registrator", "com.dahua.dse3.driver.dataset.DseKryoRegistrator");
sparkConf.set("spark.cores.max", sparkCoresMax);
sparkConf.set("spark.akka.threads", "12");
sparkConf.set("spark.local.dir", sparkLocalDir);
sparkConf.set("spark.shuffle.manager", "SORT");
sparkConf.set("spark.network.timeout", "120");
sparkConf.set("spark.rpc.lookupTimeout", "120");
sparkConf.set("spark.executor.extraClassPath", "/usr/dahua/spark/executelib/hbase-protocol-0.98.3-hadoop2.jar");
sparkConf.set("spark.executor.extraJavaOptions", "-verbose:gc -XX:+PrintGCDetails -XX:+PrintGCTimeStamps");
sparkConf.set("spark.sql.codegen", "TRUE");
//sparkConf.set("spark.sql.parquet.filterPushdown","true");
}
JavaSparkContext jsc = new JavaSparkContext(sparkConf);
if (!sparkJarAddress.isEmpty() && !sparkMaster.contains("local")) {
jsc.addJar(sparkJarAddress);
}
String hdfsPath = "hdfs://mycluster/wl/parquet/test/2016-06-21";
String source = "test";
SQLContext sqlContext = new SQLContext(jsc);
DataFrame dataFrame = sqlContext.parquetFile(hdfsPath);
dataFrame.registerTempTable(source);
String sql = "SELECT id,dev_chnid,dev_chnname,car_num,car_speed,car_direct from test";
DataFrame result = sqlContext.sql(sql);
log.info("Result:"+result.count());
}
}


当执行result.count()就会触发客户端这边提交Job进行计算,先来看下关键日志打印(修改过源码方便日志打印):

16-07-08 17:19:46,080 INFO  org.apache.spark.sql.SQLContext(Logging.scala:59) ## ----------------------parseSql start--------------------------
16-07-08 17:19:46,080 INFO  org.apache.spark.sql.SQLContext(Logging.scala:59) ##
[SELECT id,dev_chnid,dev_chnname,car_num,car_speed,car_direct from test]
16-07-08 17:19:46,728 INFO  org.apache.spark.sql.SQLContext(Logging.scala:59) ## ----------------------parseSql end  --------------------------
16-07-08 17:19:46,738 INFO  org.apache.spark.sql.SQLContext(Logging.scala:59) ##
['Project ['id,'dev_chnid,'dev_chnname,'car_num,'car_speed,'car_direct]
'UnresolvedRelation [test], None
]
……
16-07-08 17:29:28,651 INFO  org.apache.spark.scheduler.TaskSchedulerImpl(Logging.scala:59) ## Removed TaskSet 1.0, whose tasks have all completed, from pool default
16-07-08 17:29:28,661 INFO  org.apache.spark.scheduler.DAGScheduler(Logging.scala:59) ## Job 0 finished: count at TestSparkSql.java:64, took 11.098610 s
[== Parsed Logical Plan ==
Aggregate [COUNT(1) AS count#43L]
Project [id#0L,dev_chnid#26,dev_chnname#4,car_num#5,car_speed#8,car_direct#12]
Subquery test
Relation[id#0L,dev_id#1,dev_chnnum#2L,dev_name#3,dev_chnname#4,car_num#5,car_numtype#6,car_numcolor#7,car_speed#8,car_type#9,car_color#10,car_length#11L,car_direct#12,car_way_code#13,cap_time#14L,cap_date#15L,inf_note#16,max_speed#17,min_speed#18,car_img_url#19,car_img1_url#20,car_img2_url#21,car_img3_url#22,car_img4_url#23,car_img5_url#24,rec_stat#25,dev_chnid#26,car_img_count#27,save_flag#28,dc_cleanflag#29,pic_id#30,car_img_plate_top#31L,car_img_plate_left#32L,car_img_plate_bottom#33L,car_img_plate_right#34L,car_brand#35L,issafetybelt#36,isvisor#37,bind_stat#38,car_num_pic#39,combined_pic_url#40,verify_memo#41,rec_stat_tmp#42] org.apache.spark.sql.parquet.ParquetRelation2@2a400010
== Analyzed Logical Plan ==
count: bigint
Aggregate [COUNT(1) AS count#43L]
Project [id#0L,dev_chnid#26,dev_chnname#4,car_num#5,car_speed#8,car_direct#12]
Subquery test
Relation[id#0L,dev_id#1,dev_chnnum#2L,dev_name#3,dev_chnname#4,car_num#5,car_numtype#6,car_numcolor#7,car_speed#8,car_type#9,car_color#10,car_length#11L,car_direct#12,car_way_code#13,cap_time#14L,cap_date#15L,inf_note#16,max_speed#17,min_speed#18,car_img_url#19,car_img1_url#20,car_img2_url#21,car_img3_url#22,car_img4_url#23,car_img5_url#24,rec_stat#25,dev_chnid#26,car_img_count#27,save_flag#28,dc_cleanflag#29,pic_id#30,car_img_plate_top#31L,car_img_plate_left#32L,car_img_plate_bottom#33L,car_img_plate_right#34L,car_brand#35L,issafetybelt#36,isvisor#37,bind_stat#38,car_num_pic#39,combined_pic_url#40,verify_memo#41,rec_stat_tmp#42] org.apache.spark.sql.parquet.ParquetRelation2@2a400010
== Optimized Logical Plan ==
Aggregate [COUNT(1) AS count#43L]
Project
Relation[id#0L,dev_id#1,dev_chnnum#2L,dev_name#3,dev_chnname#4,car_num#5,car_numtype#6,car_numcolor#7,car_speed#8,car_type#9,car_color#10,car_length#11L,car_direct#12,car_way_code#13,cap_time#14L,cap_date#15L,inf_note#16,max_speed#17,min_speed#18,car_img_url#19,car_img1_url#20,car_img2_url#21,car_img3_url#22,car_img4_url#23,car_img5_url#24,rec_stat#25,dev_chnid#26,car_img_count#27,save_flag#28,dc_cleanflag#29,pic_id#30,car_img_plate_top#31L,car_img_plate_left#32L,car_img_plate_bottom#33L,car_img_plate_right#34L,car_brand#35L,issafetybelt#36,isvisor#37,bind_stat#38,car_num_pic#39,combined_pic_url#40,verify_memo#41,rec_stat_tmp#42] org.apache.spark.sql.parquet.ParquetRelation2@2a400010
== Spark Plan ==
GeneratedAggregate false, [Coalesce(SUM(PartialCount#44L),0) AS count#43L], false
GeneratedAggregate true, [COUNT(1) AS PartialCount#44L], false
PhysicalRDD MapPartitionsRDD[1] at
== Execute Plan ==
GeneratedAggregate false, [Coalesce(SUM(PartialCount#44L),0) AS count#43L], false
Exchange SinglePartition
GeneratedAggregate true, [COUNT(1) AS PartialCount#44L], false
PhysicalRDD MapPartitionsRDD[1] at
Code Generation: true
== RDD ==]
16-07-08 17:29:28,686 INFO  com.dahua.dse3.TestSparkSql(TestSparkSql.java:64) ## Result:1489740


可见一个Sql语句转化为实际可执行的Spark的RDD模型需要经过以下几个步骤:



 在进一步讲解之前,先主要介绍下Spark-SQL里面的主要类成员:

1.2 SQLContext

SQL上下文环境,它保存了QueryExecution中所需要的几个类:

1.2.1 Catalog

一个存储<tableName,logicalPlan>的map结构,查找关系的目录,注册表,注销表,查询表和逻辑计划关系的类

@transient
protected[sql] lazy val catalog: Catalog = new SimpleCatalog(conf)
class SimpleCatalog(val conf: CatalystConf) extends Catalog {
val tables = new mutable.HashMap[String, LogicalPlan]()
override def registerTable(
tableIdentifier: Seq[String],
plan: LogicalPlan): Unit = {
//转化大小写
val tableIdent = processTableIdentifier(tableIdentifier)
tables += ((getDbTableName(tableIdent), plan))
}
override def unregisterTable(tableIdentifier: Seq[String]): Unit = {
val tableIdent = processTableIdentifier(tableIdentifier)
tables -= getDbTableName(tableIdent)
}
override def unregisterAllTables(): Unit = {
tables.clear()
}
override def tableExists(tableIdentifier: Seq[String]): Boolean = {
val tableIdent = processTableIdentifier(tableIdentifier)
tables.get(getDbTableName(tableIdent)) match {
case Some(_) => true
case None => false
}
}
override def lookupRelation(
tableIdentifier: Seq[String],
alias: Option[String] = None): LogicalPlan = {
val tableIdent = processTableIdentifier(tableIdentifier)
val tableFullName = getDbTableName(tableIdent)
//  val tables = new mutable.HashMap[String, LogicalPlan](),根据表名获取logicalplan
val table = tables.getOrElse(tableFullName, sys.error(s"Table Not Found: $tableFullName"))
val tableWithQualifiers = Subquery(tableIdent.last, table)
// If an alias was specified by the lookup, wrap the plan in a subquery so that attributes are
// properly qualified with this alias.
alias.map(a => Subquery(a, tableWithQualifiers)).getOrElse(tableWithQualifiers)
}
override def getTables(databaseName: Option[String]): Seq[(String, Boolean)] = {
tables.map {
case (name, _) => (name, true)
}.toSeq
}
override def refreshTable(databaseName: String, tableName: String): Unit = {
throw new UnsupportedOperationException
}
}

1.2.2 SparkSQLParser

将Sql语句解析成语法树,返回一个Logical Plan。它首先拆分不同的SQL(将其分类),然后利用fallback解析。 

/**
* The top level Spark SQL parser. This parser recognizes syntaxes that are available for all SQL
* dialects supported by Spark SQL, and delegates all the other syntaxes to the `fallback` parser.
*
* @param fallback A function that parses an input string to a logical plan
*/
private[sql] class SparkSQLParser(fallback: String => LogicalPlan) extends AbstractSparkSQLParser {
protected val AS = Keyword("AS")
protected val CACHE = Keyword("CACHE")
protected val CLEAR = Keyword("CLEAR")
protected val IN = Keyword("IN")
protected val LAZY = Keyword("LAZY")
protected val SET = Keyword("SET")
protected val SHOW = Keyword("SHOW")
protected val TABLE = Keyword("TABLE")
protected val TABLES = Keyword("TABLES")
protected val UNCACHE = Keyword("UNCACHE")
override protected lazy val start: Parser[LogicalPlan] = cache | uncache | set | show | others
private lazy val cache: Parser[LogicalPlan] =
CACHE ~> LAZY.? ~ (TABLE ~> ident) ~ (AS ~> restInput).? ^^ {
case isLazy ~ tableName ~ plan =>
CacheTableCommand(tableName, plan.map(fallback), isLazy.isDefined)
}
private lazy val uncache: Parser[LogicalPlan] =
( UNCACHE ~ TABLE ~> ident ^^ {
case tableName => UncacheTableCommand(tableName)
}
| CLEAR ~ CACHE ^^^ ClearCacheCommand
)
private lazy val set: Parser[LogicalPlan] =
SET ~> restInput ^^ {
case input => SetCommandParser(input)
}
private lazy val show: Parser[LogicalPlan] =
SHOW ~> TABLES ~ (IN ~> ident).? ^^ {
case _ ~ dbName => ShowTablesCommand(dbName)
}
private lazy val others: Parser[LogicalPlan] =
wholeInput ^^ {
case input => fallback(input)
}
}

1.2.3 Analyzer

语法分析器,Analyzer会使用Catalog和FunctionRegistry将UnresolvedAttribute和UnresolvedRelation转换为catalyst里全类型的对象。例如将

'UnresolvedRelation[test], None

转化为

Relation[id#0L,dev_id#1,dev_chnnum#2L,dev_name#3,dev_chnname#4,car_num#5,car_numtype#6,car_numcolor#7,car_speed#8,car_type#9,car_color#10,car_length#11L,car_direct#12,car_way_code#13,cap_time#14L,cap_date#15L,inf_note#16,max_speed#17,min_speed#18,car_img_url#19,car_img1_url#20,car_img2_url#21,car_img3_url#22,car_img4_url#23,car_img5_url#24,rec_stat#25,dev_chnid#26,car_img_count#27,save_flag#28,dc_cleanflag#29,pic_id#30,car_img_plate_top#31L,car_img_plate_left#32L,car_img_plate_bottom#33L,car_img_plate_right#34L,car_brand#35L,issafetybelt#36,isvisor#37,bind_stat#38,car_num_pic#39,combined_pic_url#40,verify_memo#41,rec_stat_tmp#42]org.apache.spark.sql.parquet.ParquetRelation2@2a400010

class Analyzer(
catalog: Catalog,
registry: FunctionRegistry,
conf: CatalystConf,
maxIterations: Int = 100)
extends RuleExecutor[LogicalPlan] with HiveTypeCoercion with CheckAnalysis {
……
}

1.2.4 Optimizer

优化器,将Logical Plan进一步进行优化

object DefaultOptimizer extends Optimizer {
val batches =
// SubQueries are only needed for analysis and can be removed before execution.
Batch("Remove SubQueries", FixedPoint(100),
EliminateSubQueries) ::
Batch("Operator Reordering", FixedPoint(100),
UnionPushdown,
CombineFilters,
PushPredicateThroughProject,
PushPredicateThroughJoin,
PushPredicateThroughGenerate,
ColumnPruning,
ProjectCollapsing,
CombineLimits) ::
Batch("ConstantFolding", FixedPoint(100),
NullPropagation,
OptimizeIn,
ConstantFolding,
LikeSimplification,
BooleanSimplification,
SimplifyFilters,
SimplifyCasts,
SimplifyCaseConversionExpressions) ::
Batch("Decimal Optimizations", FixedPoint(100),
DecimalAggregates) ::
Batch("LocalRelation", FixedPoint(100),
ConvertToLocalRelation) :: Nil
}
 例如:
CombineFilters:递归合并两个相邻的filter。例如:将

Filter(a>1)
 Filter(b>1)
Project……
转化为
Filter(a>1) AND Filter(b>1)
 Project……
CombineLimits:合并两个相邻的limit。例如:将select * from (select * from c_picrecord limit 100)a limit 10

优化为:
Limit if ((100 < 10)) 100 else 10

Relation[id#0L,dev_id#1,dev_chnnum#2L,de……

1.2.5 SparkPlanner

将LogicalPlan转化为SparkPlan

protected[sql] class SparkPlanner extends SparkStrategies {
val sparkContext: SparkContext = self.sparkContext
val sqlContext: SQLContext = self
def codegenEnabled: Boolean = self.conf.codegenEnabled
def unsafeEnabled: Boolean = self.conf.unsafeEnabled
def numPartitions: Int = self.conf.numShufflePartitions
def strategies: Seq[Strategy] =
experimental.extraStrategies ++ (
DataSourceStrategy ::
DDLStrategy ::
TakeOrdered ::
HashAggregation ::
LeftSemiJoin ::
HashJoin ::
InMemoryScans ::
ParquetOperations ::
BasicOperators ::
CartesianProduct ::
BroadcastNestedLoopJoin :: Nil)
}

比方说:

Subquery test

Relation[id#0L,dev_id#1,dev_chnnum#2L,dev_name#3,dev_chnname#4,car_num#5,car_numtype#6,car_numcolor#7,car_speed#8,car_type#9,car_color#10,car_length#11L,car_direct#12,car_way_code#13,cap_time#14L,cap_date#15L,inf_note#16,max_speed#17,min_speed#18,car_img_url#19,car_img1_url#20,car_img2_url#21,car_img3_url#22,car_img4_url#23,car_img5_url#24,rec_stat#25,dev_chnid#26,car_img_count#27,save_flag#28,dc_cleanflag#29,pic_id#30,car_img_plate_top#31L,car_img_plate_left#32L,car_img_plate_bottom#33L,car_img_plate_right#34L,car_brand#35L,issafetybelt#36,isvisor#37,bind_stat#38,car_num_pic#39,combined_pic_url#40,verify_memo#41,rec_stat_tmp#42]org.apache.spark.sql.parquet.ParquetRelation2@2a400010

通过DataSourceStrategy中的

// Scanning non-partitioned HadoopFsRelation
case PhysicalOperation(projectList, filters, l @ LogicalRelation(t: HadoopFsRelation)) =>

将其转化为
PhysicalRDD

1.2.6 PrepareForExecution

在SparkPlan中插入Shuffle的操作,如果前后2个SparkPlan的outputPartitioning不一样的话,则中间需要插入Shuffle的动作,比分说聚合函数,先局部聚合,然后全局聚合,局部聚合和全局聚合的分区规则是不一样的,中间需要进行一次Shuffle。

/**
* Prepares a planned SparkPlan for execution by inserting shuffle operations as needed.
*/
@transient
protected[sql] val prepareForExecution = new RuleExecutor[SparkPlan] {
val batches =
Batch("Add exchange", Once, EnsureRequirements(self)) :: Nil
}
例如
GeneratedAggregate false,[Coalesce(SUM(PartialCount#44L),0) AS count#43L], false

 GeneratedAggregatetrue, [COUNT(1) AS PartialCount#44L], false

    PhysicalRDDMapPartitionsRDD[1]

经过PrepareForExecution,转化为

GeneratedAggregate false,[Coalesce(SUM(PartialCount#44L),0) AS count#43L], false

 Exchange SinglePartition

 GeneratedAggregate true, [COUNT(1) AS PartialCount#44L], false

      PhysicalRDDMapPartitionsRDD[1]

1.3 QueryExecution

SQL语句执行环境

protected[sql] class QueryExecution(val logical: LogicalPlan) {//logical包含了Aggregate(groupingExprs, aggregates, df.logicalPlan)
def assertAnalyzed(): Unit = analyzer.checkAnalysis(analyzed)
lazy val analyzed: LogicalPlan = analyzer.execute(logical)
lazy val withCachedData: LogicalPlan = {
assertAnalyzed()
cacheManager.useCachedData(analyzed)
}
lazy val optimizedPlan: LogicalPlan = optimizer.execute(withCachedData)//优化过的LogicalPlan
// TODO: Don't just pick the first one...
lazy val sparkPlan: SparkPlan = {
SparkPlan.currentContext.set(self)
//SparkPlanner把LogicalPlan转化为SparkPlan
//1.4.1选取的是第一个strategies DataSourceStrategy
planner.plan(optimizedPlan).next()
}
lazy val executedPlan: SparkPlan = prepareForExecution.execute(sparkPlan)
lazy val toRdd: RDD[Row] = {
toString
executedPlan.execute()
}
protected def stringOrError[A](f: => A): String =
try f.toString catch { case e: Throwable => e.toString }
def simpleString: String =
s"""== Physical Plan ==
|${stringOrError(executedPlan)}
""".stripMargin.trim
//TODO:如何打印
override def toString: String = {
def output =
analyzed.output.map(o => s"${o.name}: ${o.dataType.simpleString}").mkString(", ")
// TODO previously will output RDD details by run (${stringOrError(toRdd.toDebugString)})
// however, the `toRdd` will cause the real execution, which is not what we want.
// We need to think about how to avoid the side effect.
s"""== Parsed Logical Plan ==
|${stringOrError(logical)}
|== Analyzed Logical Plan ==
|${stringOrError(output)}
|${stringOrError(analyzed)}
|== Optimized Logical Plan ==
|${stringOrError(optimizedPlan)}
|== Physical Plan ==
|${stringOrError(executedPlan)}
|Code Generation: ${stringOrError(executedPlan.codegenEnabled)}
|== RDD ==
""".stripMargin.trim
}
}


这里唯一需要注意的是analyzed,optimizedPlan,sparkPlan,executedPlan都为懒变量,也就是说只有真正要用到的时时候才会去执行相应的代码逻辑,没有用到的时候是不会发生任何事情的。

1.4 LogicalPlan and SparkPlan

LogicalPlan和SparkPlan都继承自QueryPlan,QueryPlan为泛型类

abstract class QueryPlan[PlanType <: TreeNode[PlanType]] extends TreeNode[PlanType] {
}
abstract class LogicalPlan extends QueryPlan[LogicalPlan] with Logging {
}
abstract class SparkPlan extends QueryPlan[SparkPlan] with Logging with Serializable {
}


以上都为抽象类,然后在此基础上又根据不同的类型衍生出不同的树节点

/**
* A logical plan node with no children.叶子节点,没有子节点
*/
abstract class LeafNode extends LogicalPlan with trees.LeafNode[LogicalPlan] {
self: Product =>
}
/**
* A logical plan node with single child. 一元节点
*/
abstract class UnaryNode extends LogicalPlan with trees.UnaryNode[LogicalPlan] {
self: Product =>
}
/**
* A logical plan node with a left and right child 二元节点.
*/
abstract class BinaryNode extends LogicalPlan with trees.BinaryNode[LogicalPlan] {
self: Product =>
}


//叶子节点,没有子节点
private[sql] trait LeafNode extends SparkPlan with trees.LeafNode[SparkPlan] {
self: Product =>
}
//一元节点
private[sql] trait UnaryNode extends SparkPlan with trees.UnaryNode[SparkPlan] {
self: Product =>
}
//二元节点
private[sql] trait BinaryNode extends SparkPlan with trees.BinaryNode[SparkPlan] {
self: Product =>
}


其各自真正的具体类为:

abstract class LeafNode extends LogicalPlan with trees.LeafNode[LogicalPlan] {
self: Product =>
}



abstract class UnaryNode extends LogicalPlan with trees.UnaryNode[LogicalPlan] {
self: Product =>
}



abstract class BinaryNode extends LogicalPlan with trees.BinaryNode[LogicalPlan] {
self: Product =>
}



private[sql] trait LeafNode extends SparkPlan with trees.LeafNode[SparkPlan] {
self: Product =>
}



private[sql] trait UnaryNode extends SparkPlan with trees.UnaryNode[SparkPlan] {
self: Product =>
}



private[sql] trait BinaryNode extends SparkPlan with trees.BinaryNode[SparkPlan] {
self: Product =>
}



可见Spark-Sql里面二叉树结构贯穿了整个解析过程。

 
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签:  spark 源码