您的位置:首页 > 编程语言 > Java开发

java.util.concurrent源码学习四

2016-07-14 16:43 495 查看
public interface Condition

一:作用

* {@code Condition} factors out the {@code Object} monitor
* methods ({@link Object#wait() wait}, {@link Object#notify notify}
* and {@link Object#notifyAll notifyAll}) into distinct objects to
* give the effect of having multiple wait-sets per object, by
* combining them with the use of arbitrary {@link Lock} implementations.
* Where a {@code Lock} replaces the use of {@code synchronized} methods
* and statements, a {@code Condition} replaces the use of the Object
* monitor methods.
*
* <p>Conditions (also known as <em>condition queues</em> or
* <em>condition variables</em>) provide a means for one thread to
* suspend execution (to "wait") until notified by another
* thread that some state condition may now be true. Because access
* to this shared state information occurs in different threads, it
* must be protected, so a lock of some form is associated with the
* condition. The key property that waiting for a condition provides
* is that it <em>atomically</em> releases the associated lock and
* suspends the current thread, just like {@code Object.wait}.
*
* <p>A {@code Condition} instance is intrinsically bound to a lock.
* To obtain a {@code Condition} instance for a particular {@link Lock}
* instance use its {@link Lock#newCondition newCondition()} method.用Condition实现将原来每个Object中监视的方法wait,notify,notifyAll替换
用Lock的实现将Synchronized的方法替换

二:成员方法

/**
* Causes the current thread to wait until it is signalled or
* {@linkplain Thread#interrupt interrupted}.
*
* <p>The lock associated with this {@code Condition} is atomically
* released and the current thread becomes disabled for thread scheduling
* purposes and lies dormant until <em>one</em> of four things happens:
* <ul>
* <li>Some other thread invokes the {@link #signal} method for this
* {@code Condition} and the current thread happens to be chosen as the
* thread to be awakened; or
* <li>Some other thread invokes the {@link #signalAll} method for this
* {@code Condition}; or
* <li>Some other thread {@linkplain Thread#interrupt interrupts} the
* current thread, and interruption of thread suspension is supported; or
* <li>A "<em>spurious wakeup</em>" occurs.
* </ul>
*
* <p>In all cases, before this method can return the current thread must
* re-acquire the lock associated with this condition. When the
* thread returns it is <em>guaranteed</em> to hold this lock.
*
* <p>If the current thread:
* <ul>
* <li>has its interrupted status set on entry to this method; or
* <li>is {@linkplain Thread#interrupt interrupted} while waiting
* and interruption of thread suspension is supported,
* </ul>
* then {@link InterruptedException} is thrown and the current thread's
* interrupted status is cleared. It is not specified, in the first
* case, whether or not the test for interruption occurs before the lock
* is released.
*
* <p><b>Implementation Considerations</b>
*
* <p>The current thread is assumed to hold the lock associated with this
* {@code Condition} when this method is called.
* It is up to the implementation to determine if this is
* the case and if not, how to respond. Typically, an exception will be
* thrown (such as {@link IllegalMonitorStateException}) and the
* implementation must document that fact.
*
* <p>An implementation can favor responding to an interrupt over normal
* method return in response to a signal. In that case the implementation
* must ensure that the signal is redirected to another waiting thread, if
* there is one.
*
* @throws InterruptedException if the current thread is interrupted
* (and interruption of thread suspension is supported)
*/
void await() throws InterruptedException;  当前线程等待,直到线程被中断或者signaled

/**
* Causes the current thread to wait until it is signalled.
*
* <p>The lock associated with this condition is atomically
* released and the current thread becomes disabled for thread scheduling
* purposes and lies dormant until <em>one</em> of three things happens:
* <ul>
* <li>Some other thread invokes the {@link #signal} method for this
* {@code Condition} and the current thread happens to be chosen as the
* thread to be awakened; or
* <li>Some other thread invokes the {@link #signalAll} method for this
* {@code Condition}; or
* <li>A "<em>spurious wakeup</em>" occurs.
* </ul>
*
* <p>In all cases, before this method can return the current thread must
* re-acquire the lock associated with this condition. When the
* thread returns it is <em>guaranteed</em> to hold this lock.
*
* <p>If the current thread's interrupted status is set when it enters
* this method, or it is {@linkplain Thread#interrupt interrupted}
* while waiting, it will continue to wait until signalled. When it finally
* returns from this method its interrupted status will still
* be set.
*
* <p><b>Implementation Considerations</b>
*
* <p>The current thread is assumed to hold the lock associated with this
* {@code Condition} when this method is called.
* It is up to the implementation to determine if this is
* the case and if not, how to respond. Typically, an exception will be
* thrown (such as {@link IllegalMonitorStateException}) and the
* implementation must document that fact.
*/
void awaitUninterruptibly(); 当前线程等待,直到线程被signaled

/**
* Causes the current thread to wait until it is signalled or interrupted,
* or the specified waiting time elapses.
*
* <p>The lock associated with this condition is atomically
* released and the current thread becomes disabled for thread scheduling
* purposes and lies dormant until <em>one</em> of five things happens:
* <ul>
* <li>Some other thread invokes the {@link #signal} method for this
* {@code Condition} and the current thread happens to be chosen as the
* thread to be awakened; or
* <li>Some other thread invokes the {@link #signalAll} method for this
* {@code Condition}; or
* <li>Some other thread {@linkplain Thread#interrupt interrupts} the
* current thread, and interruption of thread suspension is supported; or
* <li>The specified waiting time elapses; or
* <li>A "<em>spurious wakeup</em>" occurs.
* </ul>
*
* <p>In all cases, before this method can return the current thread must
* re-acquire the lock associated with this condition. When the
* thread returns it is <em>guaranteed</em> to hold this lock.
*
* <p>If the current thread:
* <ul>
* <li>has its interrupted status set on entry to this method; or
* <li>is {@linkplain Thread#interrupt interrupted} while waiting
* and interruption of thread suspension is supported,
* </ul>
* then {@link InterruptedException} is thrown and the current thread's
* interrupted status is cleared. It is not specified, in the first
* case, whether or not the test for interruption occurs before the lock
* is released.
*
* <p>The method returns an estimate of the number of nanoseconds
* remaining to wait given the supplied {@code nanosTimeout}
* value upon return, or a value less than or equal to zero if it
* timed out. This value can be used to determine whether and how
* long to re-wait in cases where the wait returns but an awaited
* condition still does not hold. Typical uses of this method take
* the following form:
*
* <pre> {@code
* boolean aMethod(long timeout, TimeUnit unit) {
* long nanos = unit.toNanos(timeout);
* lock.lock();
* try {
* while (!conditionBeingWaitedFor()) {
* if (nanos <= 0L)
* return false;
4000
* nanos = theCondition.awaitNanos(nanos);
* }
* // ...
* } finally {
* lock.unlock();
* }
* }}</pre>
*
* <p> Design note: This method requires a nanosecond argument so
* as to avoid truncation errors in reporting remaining times.
* Such precision loss would make it difficult for programmers to
* ensure that total waiting times are not systematically shorter
* than specified when re-waits occur.
*
* <p><b>Implementation Considerations</b>
*
* <p>The current thread is assumed to hold the lock associated with this
* {@code Condition} when this method is called.
* It is up to the implementation to determine if this is
* the case and if not, how to respond. Typically, an exception will be
* thrown (such as {@link IllegalMonitorStateException}) and the
* implementation must document that fact.
*
* <p>An implementation can favor responding to an interrupt over normal
* method return in response to a signal, or over indicating the elapse
* of the specified waiting time. In either case the implementation
* must ensure that the signal is redirected to another waiting thread, if
* there is one.
*
* @param nanosTimeout the maximum time to wait, in nanoseconds
* @return an estimate of the {@code nanosTimeout} value minus
* the time spent waiting upon return from this method.
* A positive value may be used as the argument to a
* subsequent call to this method to finish waiting out
* the desired time. A value less than or equal to zero
* indicates that no time remains.
* @throws InterruptedException if the current thread is interrupted
* (and interruption of thread suspension is supported)
*/
long awaitNanos(long nanosTimeout) throws InterruptedException; 当前线程等待,直到被singled,中断或者等待时间超过指定的时间,时间单位为nano

/**
* Causes the current thread to wait until it is signalled or interrupted,
* or the specified waiting time elapses. This method is behaviorally
* equivalent to:<br>
* <pre>
* awaitNanos(unit.toNanos(time)) > 0
* </pre>
* @param time the maximum time to wait
* @param unit the time unit of the {@code time} argument
* @return {@code false} if the waiting time detectably elapsed
* before return from the method, else {@code true}
* @throws InterruptedException if the current thread is interrupted
* (and interruption of thread suspension is supported)
*/
boolean await(long time, TimeUnit unit) throws InterruptedException; 当前线程等待,直到singled,中断或者等待时间超过指定时间,时间单位为指定单位

/**
* Causes the current thread to wait until it is signalled or interrupted,
* or the specified deadline elapses.
*
* <p>The lock associated with this condition is atomically
* released and the current thread becomes disabled for thread scheduling
* purposes and lies dormant until <em>one</em> of five things happens:
* <ul>
* <li>Some other thread invokes the {@link #signal} method for this
* {@code Condition} and the current thread happens to be chosen as the
* thread to be awakened; or
* <li>Some other thread invokes the {@link #signalAll} method for this
* {@code Condition}; or
* <li>Some other thread {@linkplain Thread#interrupt interrupts} the
* current thread, and interruption of thread suspension is supported; or
* <li>The specified deadline elapses; or
* <li>A "<em>spurious wakeup</em>" occurs.
* </ul>
*
* <p>In all cases, before this method can return the current thread must
* re-acquire the lock associated with this condition. When the
* thread returns it is <em>guaranteed</em> to hold this lock.
*
*
* <p>If the current thread:
* <ul>
* <li>has its interrupted status set on entry to this method; or
* <li>is {@linkplain Thread#interrupt interrupted} while waiting
* and interruption of thread suspension is supported,
* </ul>
* then {@link InterruptedException} is thrown and the current thread's
* interrupted status is cleared. It is not specified, in the first
* case, whether or not the test for interruption occurs before the lock
* is released.
*
*
* <p>The return value indicates whether the deadline has elapsed,
* which can be used as follows:
*  <pre> {@code
* boolean aMethod(Date deadline) {
*   boolean stillWaiting = true;
*   lock.lock();
*   try {
*     while (!conditionBeingWaitedFor()) {
*       if (!stillWaiting)
*         return false;
*       stillWaiting = theCondition.awaitUntil(deadline);
*     }
*     // ...
*   } finally {
*     lock.unlock();
*   }
* }}</pre>
*
* <p><b>Implementation Considerations</b>
*
* <p>The current thread is assumed to hold the lock associated with this
* {@code Condition} when this method is called.
* It is up to the implementation to determine if this is
* the case and if not, how to respond. Typically, an exception will be
* thrown (such as {@link IllegalMonitorStateException}) and the
* implementation must document that fact.
*
* <p>An implementation can favor responding to an interrupt over normal
* method return in response to a signal, or over indicating the passing
* of the specified deadline. In either case the implementation
* must ensure that the signal is redirected to another waiting thread, if
* there is one.
*
* @param deadline the absolute time to wait until
* @return {@code false} if the deadline has elapsed upon return, else
*         {@code true}
* @throws InterruptedException if the current thread is interrupted
*         (and interruption of thread suspension is supported)
*/
boolean awaitUntil(Date deadline) throws InterruptedException;
当前线程等待,直到被signalled,中断或者到指定时间点

/**
* Wakes up one waiting thread.
*
* <p>If any threads are waiting on this condition then one
* is selected for waking up. That thread must then re-acquire the
* lock before returning from {@code await}.
*
* <p><b>Implementation Considerations</b>
*
* <p>An implementation may (and typically does) require that the
* current thread hold the lock associated with this {@code
* Condition} when this method is called. Implementations must
* document this precondition and any actions taken if the lock is
* not held. Typically, an exception such as {@link
* IllegalMonitorStateException} will be thrown.
*/
void signal(); 唤醒一个等待的线程

/**
* Wakes up all waiting threads.
*
* <p>If any threads are waiting on this condition then they are
* all woken up. Each thread must re-acquire the lock before it can
* return from {@code await}.
*
* <p><b>Implementation Considerations</b>
*
* <p>An implementation may (and typically does) require that the
* current thread hold the lock associated with this {@code
* Condition} when this method is called. Implementations must
* document this precondition and any actions taken if the lock is
* not held. Typically, an exception such as {@link
* IllegalMonitorStateException} will be thrown.
*/
void signalAll(); 唤醒所有等待的线程
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: