您的位置:首页 > 理论基础 > 计算机网络

Golang网络库中socket阻塞调度源码剖析

2016-06-28 20:45 399 查看
本文分析了Golang的socket文件描述符和goroutine阻塞调度的原理。代码中大部分是Go代码,小部分是汇编代码。完整理解本文需要Go语言知识,并且用Golang写过网络程序。更重要的是,需要提前理解goroutine的调度原理。

1. TCP的连接对象:

连接对象:

在net.go中有一个名为
Conn
的接口,提供了对于连接的读写和其他操作:

type Conn interface {
Read(b []byte) (n int, err error)
Write(b []byte) (n int, err error)
Close() error
LocalAddr() Addr
RemoteAddr() Addr
SetReadDeadline(t time.Time) error
SetWriteDeadline(t time.Time) error
}

这个接口就是对下面的结构体
conn
的抽象。
conn
结构体包含了对连接的读写和其他操作:

type conn struct {
fd *netFD
}

从连接读取数据:

// Read implements the Conn Read method.
func (c *conn) Read(b []byte) (int, error) {
if !c.ok() {
return 0, syscall.EINVAL
}
return c.fd.Read(b)
}

向连接写入数据:

// Write implements the Conn Write method.
func (c *conn) Write(b []byte) (int, error) {
if !c.ok() {
return 0, syscall.EINVAL
}
return c.fd.Write(b)
}

关闭连接:

// Close closes the connection.
func (c *conn) Close() error {
if !c.ok() {
return syscall.EINVAL
}
return c.fd.Close()
}

设置读写超时:

// SetDeadline implements the Conn SetDeadline method.
func (c *conn) SetDeadline(t time.Time) error {
if !c.ok() {
return syscall.EINVAL
}
return c.fd.setDeadline(t)
}
// SetReadDeadline implements the Conn SetReadDeadline method.
func (c *conn) SetReadDeadline(t time.Time) error {
if !c.ok() {
return syscall.EINVAL
}
return c.fd.setReadDeadline(t)
}
// SetWriteDeadline implements the Conn SetWriteDeadline method.
func (c *conn) SetWriteDeadline(t time.Time) error {
if !c.ok() {
return syscall.EINVAL
}
return c.fd.setWriteDeadline(t)
}

可以看到,对连接的所有操作,都体现在对
*netFD
的操作上。我们继续跟踪
c.fd.Read()
函数.

2.文件描述符

net/fd_unix.go:


网络连接的文件描述符:

// Network file descriptor.
type netFD struct {
// locking/lifetime of sysfd + serialize access to Read and Write methods
fdmu fdMutex
// immutable until Close
sysfd       int
family      int
sotype      int
isConnected bool
net         string
laddr       Addr
raddr       Addr
// wait server
pd pollDesc
}

文件描述符读取数据:

func (fd *netFD) Read(p []byte) (n int, err error) {
if err := fd.readLock(); err != nil {
return 0, err
}
defer fd.readUnlock()
if err := fd.pd.PrepareRead(); err != nil {
return 0, &OpError{"read", fd.net, fd.raddr, err}
}
// 调用system call,循环从fd.sysfd读取数据
for {
// 系统调用Read读取数据
n, err = syscall.Read(int(fd.sysfd), p)
// 如果发生错误,则需要处理
// 并且只处理EAGAIN类型的错误,其他错误一律返回给调用者
if err != nil {
n = 0
// 对于非阻塞的网络连接的文件描述符,如果错误是EAGAIN
// 说明Socket的缓冲区为空,未读取到任何数据
// 则调用fd.pd.WaitRead,
if err == syscall.EAGAIN {
if err = fd.pd.WaitRead(); err == nil {
continue
}
}
}
err = chkReadErr(n, err, fd)
break
}
if err != nil && err != io.EOF {
err = &OpError{"read", fd.net, fd.raddr, err}
}
return
}

网络轮询器

网络轮询器是Golang中针对每个socket文件描述符建立的轮询机制。 此处的轮询并不是一般意义上的轮询,而是Golang的runtime在调度goroutine或者GC完成之后或者指定时间之内,调用epoll_wait获取所有产生IO事件的socket文件描述符。当然在runtime轮询之前,需要将socket文件描述符和当前goroutine的相关信息加入epoll维护的数据结构中,并挂起当前goroutine,当IO就绪后,通过epoll返回的文件描述符和其中附带的goroutine的信息,重新恢复当前goroutine的执行。

// Integrated network poller (platform-independent part).
// 网络轮询器(平台独立部分)
// A particular implementation (epoll/kqueue) must define the following functions:
// 实际的实现(epoll/kqueue)必须定义以下函数:
// func netpollinit()           // to initialize the poller,初始化轮询器
// func netpollopen(fd uintptr, pd *pollDesc) int32 // to arm edge-triggered notifications, 为fd和pd启动边缘触发通知
// and associate fd with pd.
// 一个实现必须调用下面的函数,用来指示pd已经准备好
// An implementation must call the following function to denote that the pd is ready.
// func netpollready(gpp **g, pd *pollDesc, mode int32)
// pollDesc contains 2 binary semaphores, rg and wg, to park reader and writer
// goroutines respectively. The semaphore can be in the following states:
// pollDesc包含了2个二进制的信号,分别负责读写goroutine的暂停.
// 信号可能处于下面的状态:
// pdReady - IO就绪通知被挂起;
//           一个goroutine将次状态置为nil来消费一个通知。
// pdReady - io readiness notification is pending;
//           a goroutine consumes the notification by changing the state to nil.
// pdWait - 一个goroutine准备暂停在信号上,但是还没有完成暂停。
// 这个goroutine通过把这个状态改变为G指针去提交这个暂停动作。
// 或者,替代性的,并行的其他通知将状态改变为READY.
// 或者,替代性的,并行的超时/关闭会将次状态变为nil
// pdWait - a goroutine prepares to park on the semaphore, but not yet parked;
//          the goroutine commits to park by changing the state to G pointer,
//          or, alternatively, concurrent io notification changes the state to READY,
//          or, alternatively, concurrent timeout/close changes the state to nil.
// G指针 - 阻塞在信号上的goroutine
// IO通知或者超时/关闭会分别将此状态置为READY或者nil.
// G pointer - the goroutine is blocked on the semaphore;
//             io notification or timeout/close changes the state to READY or nil respectively
//             and unparks the goroutine.
// nil - nothing of the above.
const (
pdReady uintptr = 1
pdWait  uintptr = 2
)

网络轮询器的数据结构如下:

// Network poller descriptor.
// 网络轮询器描述符
type pollDesc struct {
link *pollDesc // in pollcache, protected by pollcache.lock
// The lock protects pollOpen, pollSetDeadline, pollUnblock and deadlineimpl operations.
// This fully covers seq, rt and wt variables. fd is constant throughout the PollDesc lifetime.
// pollReset, pollWait, pollWaitCanceled and runtime·netpollready (IO readiness notification)
// proceed w/o taking the lock. So closing, rg, rd, wg and wd are manipulated
// in a lock-free way by all operations.
// NOTE(dvyukov): the following code uses uintptr to store *g (rg/wg),
// that will blow up when GC starts moving objects.
//
// lock锁对象保护了pollOpen, pollSetDeadline, pollUnblock和deadlineimpl操作。
// 而这些操作又完全包含了对seq, rt, tw变量。
// fd在PollDesc整个生命过程中都是一个常量。
// 处理pollReset, pollWait, pollWaitCanceled和runtime.netpollready(IO就绪通知)不需要用到锁。
// 所以closing, rg, rd, wg和wd的所有操作都是一个无锁的操作。
lock    mutex // protectes the following fields
fd      uintptr
closing bool
seq     uintptr        // protects from stale timers and ready notifications
rg      uintptr        // pdReady, pdWait, G waiting for read or nil
rt      timer          // read deadline timer (set if rt.f != nil)
rd      int64          // read deadline
wg      uintptr        // pdReady, pdWait, G waiting for write or nil
wt      timer          // write deadline timer
wd      int64          // write deadline
user    unsafe.Pointer // user settable cookie
}

将当前goroutine设置为阻塞在fd上:

pd.WaitRead():


func (pd *pollDesc) WaitRead() error {
return pd.Wait('r')
}
func (pd *pollDesc) Wait(mode int) error {
res := runtime_pollWait(pd.runtimeCtx, mode)
return convertErr(res)
}

res是runtime_pollWait函数返回的结果,由conevertErr函数包装后返回:

func convertErr(res int) error {
switch res {
case 0:
return nil
case 1:
return errClosing
case 2:
return errTimeout
}
println("unreachable: ", res)
panic("unreachable")
}


函数返回0,表示IO已经准备好,返回nil。

返回1,说明连接已关闭,应该放回errClosing。

返回2,说明对IO进行的操作发生超时,应该返回errTimeout。

runtime_pollWait会调用runtime/thunk.s中的函数:

TEXT net·runtime_pollWait(SB),NOSPLIT,$0-0
JMP runtime·netpollWait(SB)

这是一个包装函数,没有参数,直接跳转到runtime/netpoll.go中的函数netpollWait:

func netpollWait(pd *pollDesc, mode int) int {
// 检查pd的状态是否异常
err := netpollcheckerr(pd, int32(mode))
if err != 0 {
return err
}
// As for now only Solaris uses level-triggered IO.
if GOOS == "solaris" {
onM(func() {
netpollarm(pd, mode)
})
}
// 循环中检查pd的状态是不是已经被设置为pdReady
// 即检查IO是不是已经就绪
for !netpollblock(pd, int32(mode), false) {
err = netpollcheckerr(pd, int32(mode))
if err != 0 {
return err
}
// Can happen if timeout has fired and unblocked us,
// but before we had a chance to run, timeout has been reset.
// Pretend it has not happened and retry.
}
return 0
}

netpollcheckerr
函数检查pd是否出现异常:

// 检查pd的异常
func netpollcheckerr(pd *pollDesc, mode int32) int {
// 是否已经关闭
if pd.closing {
return 1 // errClosing
}
// 当读写状态下,deadline小于0,表示pd已经过了超时时间
if (mode == 'r' && pd.rd < 0) || (mode == 'w' && pd.wd < 0) {
return 2 // errTimeout
}
// 正常情况返回0
return 0
}

netpollblock():


// returns true if IO is ready, or false if timedout or closed
// waitio - wait only for completed IO, ignore errors
// 这个函数被netpollWait循环调用
// 返回true说明IO已经准备好,返回false说明IO操作已经超时或者已经关闭
func netpollblock(pd *pollDesc, mode int32, waitio bool) bool {
// 获取pd的rg
gpp := &pd.rg
// 如果模式是w,则获取pd的wg
if mode == 'w' {
gpp = &pd.wg
}
// set the gpp semaphore to WAIT
// 在循环中设置pd的gpp为pdWait
// 因为casuintptr是自旋锁,所以需要在循环中调用
for {
// 如果在循环中发现IO已经准备好(pg的rg或者wg为pdReady状态)
// 则设置rg/wg为0,返回true
old := *gpp
if old == pdReady {
*gpp = 0
return true
}
// 每次netpollblock执行完毕之后,gpp重置为0
// 非0表示重复wait
if old != 0 {
gothrow("netpollblock: double wait")
}
// CAS操作改变gpp为pdWait
if casuintptr(gpp, 0, pdWait) {
break
}
}
// need to recheck error states after setting gpp to WAIT
// this is necessary because runtime_pollUnblock/runtime_pollSetDeadline/deadlineimpl
// do the opposite: store to closing/rd/wd, membarrier, load of rg/wg
//
// 当设置gpp为pdWait状态后,重新检查gpp的状态
// 这是必要的,因为runtime_pollUnblock/runtime_pollSetDeadline/deadlineimpl会做相反的操作
// 如果状态正常则挂起当前的goroutine
//
// 当netpollcheckerr检查io出现超时或者错误,waitio为true可用于等待ioReady
// 否则当waitio为false, 且io不出现错误或者超时才会挂起当前goroutine
if waitio || netpollcheckerr(pd, mode) == 0 {
// 解锁函数,设置gpp为pdWait,如果设置不成功
// 说明已经是发生其他事件,可以让g继续运行,而不是挂起当前g
f := netpollblockcommit
// 尝试挂起当前g
gopark(**(**unsafe.Pointer)(unsafe.Pointer(&f)), unsafe.Pointer(gpp), "IO wait")
}
// be careful to not lose concurrent READY notification
old := xchguintptr(gpp, 0)
if old > pdWait {
gothrow("netpollblock: corrupted state")
}
return old == pdReady
}

runtime/proc.go:
gopark():


// Puts the current goroutine into a waiting state and calls unlockf.
// If unlockf returns false, the goroutine is resumed.
// 将当前goroutine置为waiting状态,然后调用unlockf
func gopark(unlockf unsafe.Pointer, lock unsafe.Pointer, reason string) {
// 获取当前M
mp := acquirem()
// 获取当前G
gp := mp.curg
// 获取G的状态
status := readgstatus(gp)
// 如果不是_Grunning或者_Gscanrunning,则报错
if status != _Grunning && status != _Gscanrunning {
gothrow("gopark: bad g status")
}
// 设置lock和unlockf
mp.waitlock = lock
mp.waitunlockf = unlockf
gp.waitreason = reason
releasem(mp)
// can't do anything that might move the G between Ms here.
// 在m->g0这个栈上调用park_m,而不是当前g的栈
mcall(park_m)
}

mcall函数是一段汇编,在m->g0的栈上调用park_m,而不是在当前goroutine的栈上。mcall的功能分两部分,第一部分保存当前G的PC/SP到G的gobuf的pc/sp字段,第二部分调用park_m函数:

// func mcall(fn func(*g))
// Switch to m->g0's stack, call fn(g).
// Fn must never return.  It should gogo(&g->sched)
// to keep running g.
TEXT runtime·mcall(SB), NOSPLIT, $0-8
// 将需要执行的函数保存在DI
MOVQ    fn+0(FP), DI
// 将M的TLS存放在CX
get_tls(CX)
// 将G对象存放在AX
MOVQ    g(CX), AX   // save state in g->sched
// 将调用者的PC存放在BX
MOVQ    0(SP), BX   // caller's PC
// 将调用者的PC保存到g->sched.pc
MOVQ    BX, (g_sched+gobuf_pc)(AX)
// 第一个参数的地址,即栈顶的地址,保存到BX
LEAQ    fn+0(FP), BX    // caller's SP
// 保存SP的地址到g->sched.sp
MOVQ    BX, (g_sched+gobuf_sp)(AX)
// 将g对象保存到g->sched->g
MOVQ    AX, (g_sched+gobuf_g)(AX)
// switch to m->g0 & its stack, call fn
// 将g对象指针保存到BX
MOVQ    g(CX), BX
// 将g->m保存到BX
MOVQ    g_m(BX), BX
// 将m->g0保存到SI
MOVQ    m_g0(BX), SI
CMPQ    SI, AX  // if g == m->g0 call badmcall
JNE 3(PC)
MOVQ    $runtime·badmcall(SB), AX
JMP AX
// 将m->g0保存到g
MOVQ    SI, g(CX)   // g = m->g0
// 将g->sched.sp恢复到SP寄存器
// 即使用g0的栈
MOVQ    (g_sched+gobuf_sp)(SI), SP  // sp = m->g0->sched.sp
// AX进栈
PUSHQ   AX
MOVQ    DI, DX
// 将fn的地址复制到DI
MOVQ    0(DI), DI
// 调用函数
CALL    DI
// AX出栈
POPQ    AX
MOVQ    $runtime·badmcall2(SB), AX
JMP AX
RET

park_m函数的功能分为三部分,第一部分让当前G和当前M脱离关系,第二部分是调用解锁函数,这里是调用netpoll.go源文件中的netpollblockcommit函数:

// runtime·park continuation on g0.
void
runtime·park_m(G *gp)
{
bool ok;
// 设置当前g为Gwaiting状态
runtime·casgstatus(gp, Grunning, Gwaiting);
// 让当前g和m脱离关系
dropg();
if(g->m->waitunlockf) {
ok = g->m->waitunlockf(gp, g->m->waitlock);
g->m->waitunlockf = nil;
g->m->waitlock = nil;
// 返回0为false,非0为true
// 0说明g->m->waitlock发生了变化,即不是在gopark是设置的(pdWait)
// 说明了脱离了WAIT状态,应该设置为Grunnable,并执行g
if(!ok) {
runtime·casgstatus(gp, Gwaiting, Grunnable);
execute(gp);  // Schedule it back, never returns.
}
}
// 这里是调度当前m继续执行其他g
// 而不是上面执行execute
schedule();
}

netpollblockcommit函数,设置gpp为pdWait,设置成功返回1,否则返回0。1为true,0为false:

func netpollblockcommit(gp *g, gpp unsafe.Pointer) bool {
return casuintptr((*uintptr)(gpp), pdWait, uintptr(unsafe.Pointer(gp)))
}

到这里当前goroutine对socket文件描述符的等待IO继续的行为已经完成。过程中首先尽早尝试判断IO是否已经就绪,如果未就绪则挂起当前goroutine,挂起之后再次判断IO是否就绪,如果还未就绪则调度当前
M
运行其他
G
。如果是在调度goroutine之前IO已经就绪,则不会使当前goroutine进入调度队列,会直接运行刚才挂起的G。否则当前goroutine会进入调度队列。

接下来是等待runtime将其唤醒。runtime在执行
findrunnablequeue
starttheworld
sysmon
函数时,都会调用netpoll_epoll.go中的
netpoll
函数,寻找到IO就绪的socket文件描述符,并找到这些socket文件描述符对应的轮询器中附带的信息,根据这些信息将之前等待这些socket文件描述符就绪的goroutine状态修改为Grunnable。在以上函数中,执行完netpoll之后,会找到一个就绪的goroutine列表,接下来将就绪的goroutine加入到调度队列中,等待调度运行。

在netpoll_epoll.go中的
netpoll
函数中,
epoll_wait
函数返回N个发生事件的文件描述符对应的epollevent,接着对于每个event使用其data属性,将
event.data
转换为
*pollDesc
类型,再调用netpoll.go中的netpollready函数,将
*pollDesc
类型中的
G
数据类型去除,并附加到
netpoll
函数的调用者传递的G链表中:

// 将ev.data转换为*pollDesc类型
pd := *(**pollDesc)(unsafe.Pointer(&ev.data))
// 调用netpollready将取出pd中保存的G,并添加到链表中
netpollready((**g)(noescape(unsafe.Pointer(&gp))), pd, mode)

所以runtime在执行
findrunnablequeue
starttheworld
sysmon
函数中会执行
netpoll
函数,并返回N个goroutine。这些goroutine期待的网络事件已经发生,runtime会将这些goroutine放入到当前
P
的可运行队列中,接下来调度它们并运行。
http://ju.outofmemory.cn/entry/168649
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: