您的位置:首页 > 编程语言 > Java开发

JDK容器与并发—Map—IdentityHashMap

2016-04-20 17:36 453 查看

概述

      基于数组,用==比较key的类HashMap,非线程安全。

1)在System#identityHashCode哈希合理情况下,基础操作get、put等为固定时间;

2)影响性能的参数:期望最大键值对数(即键值对threshold),该参数在初始化时决定bucket数。如果map中的键值对数超过了该参数,bucket数则增长,进一步导致rehash;另外,容器视图迭代器遍历时间与bucket数成比例,如果对迭代性能或内存成本有较高要求,该参数不应该设置过大。

3)适用于做备份数据:保留拓扑结构象图转化、保留代理对象,都用到了对象的唯一性;

4)迭代器fail-fast。

数据结构

      Object数组,逻辑上是环形的。长度为2的幂次方,table[i]为key,table[i+1]为该key关联的value,其中i为偶数。

private transient Object[] table;


构造器

      了解几个概念:最大键值对:table.length/2; 默认负载因子:2/3; 期望最大键值对数:最大键值对*负载因子,达到该值则rehash。

// 无参构造,采用默认最大键值对数32,键值对阈值为21
public IdentityHashMap() {
init(DEFAULT_CAPACITY);
}

// 带期望最大键值对数构造
public IdentityHashMap(int expectedMaxSize) {
if (expectedMaxSize < 0)
throw new IllegalArgumentException("expectedMaxSize is negative: "
+ expectedMaxSize);
init(capacity(expectedMaxSize));
}

// 带Map参数构造
public IdentityHashMap(Map<? extends K, ? extends V> m) {
// Allow for a bit of growth
this((int) ((1 + m.size()) * 1.1));
putAll(m);
}


增删改查

容量调整策略

      与HashMap大致相同:

1)当IdentityHashMap中键值对数达到键值对阈值则对其table进行容量调整
,table容量翻倍;

2)table最大容量为1 << 30,即最大键值对数为MAXIMUM_CAPACITY = 1 << 29;

3)table容量达到最大后,如果有resize请求,则仅仅将键值对阈值调整为MAXIMUM_CAPACITY-1,不会产生新的table,还可以继续添加新的键值对,之后如果再有resize请求,则会抛出容量异常;

4)若table resize过程中产生新的table,需要将旧table的键值对重新在新table中确定bucket,再添加进来,也就是所说的hash table rehash。

private void resize(int newCapacity) {
// assert (newCapacity & -newCapacity) == newCapacity; // power of 2
int newLength = newCapacity * 2;

Object[] oldTable = table;
int oldLength = oldTable.length;
if (oldLength == 2*MAXIMUM_CAPACITY) { // can't expand any further
if (threshold == MAXIMUM_CAPACITY-1)
throw new IllegalStateException("Capacity exhausted.");
threshold = MAXIMUM_CAPACITY-1;  // Gigantic map!
return;
}
if (oldLength >= newLength)
return;

Object[] newTable = new Object[newLength];
threshold = newLength / 3; // 键值对负载因子依然为2/3,threshold几乎翻倍

// rehash
for (int j = 0; j < oldLength; j += 2) {
Object key = oldTable[j];
if (key != null) {
Object value = oldTable[j+1];
oldTable[j] = null;
oldTable[j+1] = null;
int i = hash(key, newLength); // 在newTable中获取bucketIndex
while (newTable[i] != null) // 解决hash碰撞
i = nextKeyIndex(i, newLength); // 循环后移2位
newTable[i] = key;
newTable[i + 1] = value;
}
}
table = newTable;
}

private static int hash(Object x, int length) {
// 不管x有无Override Object的hashCode方法,都会返回原始的Object的hashCode值
int h = System.identityHashCode(x);
// Multiply by -127, and left-shift to use least bit as part of hash
return ((h << 1) - (h << 8)) & (length - 1);
}

// 循环右移2位
private static int nextKeyIndex(int i, int len) {
return (i + 2 < len ? i + 2 : 0);
}


增、改

      与HashMap相似,步骤:

1)根据System.identityHashCode(key)获取hash码;

2)用hash码确定bucketIndex;

3)先遍历bucket中键值对,确定是否已有==key的,有则替换新value后返回;否则将key—value对用数组的方式添加进来。

public V put(K key, V value) {
Object k = maskNull(key);
Object[] tab = table;
int len = tab.length;
int i = hash(k, len); // 确定bucketIndex

Object item;
while ( (item = tab[i]) != null) {
if (item == k) { // 用==判断key是否相同
V oldValue = (V) tab[i + 1];
tab[i + 1] = value;
return oldValue;
}
i = nextKeyIndex(i, len);
}

modCount++;
tab[i] = k;
tab[i + 1] = value;
if (++size >= threshold)
resize(len); // len == 2 * current capacity.
return null;
}


步骤:

1)根据System.identityHashCode(key)获取hash码;

2)用hash码确定bucketIndex;

3)遍历bucket中键值对,确定是否已有==key的,有则删除且对其后的键值对进行rehash,否则返回null

public V remove(Object key) {
Object k = maskNull(key);
Object[] tab = table;
int len = tab.length;
int i = hash(k, len);

while (true) {
Object item = tab[i];
if (item == k) {
modCount++;
size--;
V oldValue = (V) tab[i + 1];
tab[i + 1] = null;
tab[i] = null;
closeDeletion(i); // 因删除产生的rehash
return oldValue;
}
if (item == null)
return null;
i = nextKeyIndex(i, len);
}

}

// 对所删除键值对后的键值对进行rehash
private void closeDeletion(int d) {
// Adapted from Knuth Section 6.4 Algorithm R
Object[] tab = table;
int len = tab.length;

// Look for items to swap into newly vacated slot
// starting at index immediately following deletion,
// and continuing until a null slot is seen, indicating
// the end of a run of possibly-colliding keys.
Object item;
for (int i = nextKeyIndex(d, len); (item = tab[i]) != null;
i = nextKeyIndex(i, len) ) {
// The following test triggers if the item at slot i (which
// hashes to be at slot r) should take the spot vacated by d.
// If so, we swap it in, and then continue with d now at the
// newly vacated i.  This process will terminate when we hit
// the null slot at the end of this run.
// The test is messy because we are using a circular table.
int r = hash(item, len);
if ((i < r && (r <= d || d <= i)) || (r <= d && d <= i)) {
tab[d] = item;
tab[d + 1] = tab[i + 1];
tab[i] = null;
tab[i + 1] = null;
d = i;
}
}
}


步骤:

1)根据System.identityHashCode(key)获取hash码;

2)用hash码确定bucketIndex;

3)遍历bucket中键值对,确定是否已有==key的,有则返回关联的value,否则返回null

public V get(Object key) {
Object k = maskNull(key);
Object[] tab = table;
int len = tab.length;
int i = hash(k, len);
while (true) {
Object item = tab[i];
if (item == k)
return (V) tab[i + 1];
if (item == null)
return null;
i = nextKeyIndex(i, len);
}
}


迭代器

      利用数组特性遍历,IdentityHashMapIterator为基础迭代器,其删除过程中需要对其后的键值对rehash。

特性

解决hash碰撞

1)IdentityHashMap的table数组的长度为2的幂次方;

2)根据System.identityHashCode(key)获取hash码,用hash码确定bucketIndex;

3)用数组解决hash碰撞问题。

      其与HashMap解决hash碰撞的方式是不一样的。

$(".MathJax").remove();
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息