您的位置:首页 > 编程语言 > Java开发

Java 1.7 ReentrantReadWriteLock源码解析

2016-03-30 23:07 525 查看
由于本人水平与表达能力有限,有错误的地方欢迎交流与指正。

1 简介

可重入读写锁时基于AQS实现的,典型的使用方法如JDK1.7中的示例:

class RWDictionary {
private final Map<String, Data> m = new TreeMap<String, Data>();
private final ReentrantReadWriteLock rwl = new ReentrantReadWriteLock();
private final Lock r = rwl.readLock();
private final Lock w = rwl.writeLock();

public Data get(String key) {
r.lock();
try { return m.get(key); }
finally { r.unlock(); }
}
public String[] allKeys() {
r.lock();
try { return m.keySet().toArray(); }
finally { r.unlock(); }
}
public Data put(String key, Data value) {
w.lock();
try { return m.put(key, value); }
finally { w.unlock(); }
}
public void clear() {
w.lock();
try { m.clear(); }
finally { w.unlock(); }
}
}}

读锁使用的是AQS的共享模式,不会阻塞读锁,但是会阻塞写锁;写锁使用的是AQS的独占模式,读写锁都会被阻塞。读写锁是共用了一个Sync(AQS类),也就是说AQS中独占模式和共享模式是并存的。

Sync有两种实现方式,公平(FairSync)和非公平(NonfairSync)。公平的含义是指如果AQS的队列中有等待线程,则当前线程直接就放弃尝试获取锁,自觉的排队了;而非公平方式不一样,当前线程还是要尝试一下(仅仅一下,和AQS队列中第一个结点竞争获取锁),如果成功了,相当于插队成功了,但是如果失败了(就是tryAcquire或tryAcquireShared失败),还是要乖乖的排到最后去。

下面的是整个类的结构图:



Sync是个AQS类,它有两个子类FairSync和NonfairSync。ReadLock和WriteLock里有个成员变量sync(指向同个变量,FaireSync或NonfaireSync类型)。(UML图不是很熟,就这样文字描述了)

2 ReentrantReadWriteLock主类

public class ReentrantReadWriteLock
implements ReadWriteLock, java.io.Serializable {
/** Inner class providing readlock */
private final ReentrantReadWriteLock.ReadLock readerLock;
/** Inner class providing writelock */
private final ReentrantReadWriteLock.WriteLock writerLock;
/** Performs all synchronization mechanics */
final Sync sync;

/**
* false,默认锁是非公平的
*/
public ReentrantReadWriteLock() {
this(false);
}

/**
* Creates a new {@code ReentrantReadWriteLock} with
* the given fairness policy.
*
* @param fair {@code true} if this lock should use a fair ordering policy
*/
public ReentrantReadWriteLock(boolean fair) {
sync = fair ? new FairSync() : new NonfairSync();
readerLock = new ReadLock(this);
writerLock = new WriteLock(this);
}
public ReentrantReadWriteLock.WriteLock writeLock() { return writerLock; }
public ReentrantReadWriteLock.ReadLock  readLock()  { return readerLock; }

主类有三个重要的成员变量:读锁、写锁和同步器。从构造函数可以看出读写锁的同步器默认是非公平的(NonfaireSync)。

3 ReadLock类

实现了Lock接口,并使用sync成员变量实现加锁、解锁功能

3.1 lock

public void lock() {
sync.acquireShared(1);
}

以AQS共享模式获取锁,参数值为1。如果系统中没有线程占有写锁,那么这个函数很快就会返回;否则,当前线程会一直阻塞,直至获取到锁。

3.2 lockInterruptibly

public void lockInterruptibly() throws InterruptedException {
sync.acquireSharedInterruptibly(1);
}

以AQS共享模式获取锁,参数值为1。如果系统中没有线程占有写锁,那么这个函数很快就会返回;否则,当前线程会一直阻塞,直至获取到锁或被其他线程中断。

3.3 tryLock

public  boolean tryLock() {
return sync.tryReadLock();
}

直接调用了sync的tryReadLock方法,这个方法和sync. tryAcquireShared基本一直(少了一个readerShouldBlock判断)。

3.4 带超时的tryLock

public boolean tryLock(long timeout, TimeUnit unit)
throws InterruptedException {
return sync.tryAcquireSharedNanos(1, unit.toNanos(timeout));
}

tryLock函数尝试获取锁,直到获取到或超时或被中断。如果当前没有线程占用写锁,会立即返回成功。和3.3的tryLock不一样,这个公平模式下会排队的。如果你不想排队又想支持超时,可以这么写代码:if(lock.tryLock() || lock.tryLock(timeout, unit) ) { ... }。

3.5 newCondition

public Condition newCondition() {
throw new UnsupportedOperationException();
}

读锁不支持条件队列的。

4 WriteLock类

实现了Lock接口,并使用sync成员变量实现加锁、解锁功能

4.1 lock

public void lock() {
sync.acquire(1);
}

以AQS独占方式获取写锁,如果当前没有线程占有读锁和写锁,该函数会立即返回;如果当前线程已经获取写锁了,holdCount的值会加1;否则,会阻塞直至获取到锁。注意:如果当前线程已经获取到读锁了,紧接着就获取写锁就会死锁了。

4.2 lockInterruptibly

public void lockInterruptibly() throws InterruptedException {
sync.acquireInterruptibly(1);
}

以AQS独占方式 获取写锁直到被中断。其他跟lock一致。

4.3 tryLock

public boolean tryLock( ) {
return sync.tryWriteLock();
}

直接调用了sync的tryWriteLock方法,这个方法和sync. tryAcquire基本一直(少了一个writerShouldBlock判断)。不管在公平模式还是非公平模式下,都不用排队。

4.4 带超时的tryLock

public boolean tryLock(long timeout, TimeUnit unit)
throws InterruptedException {
return sync.tryAcquireNanos(1, unit.toNanos(timeout));
}

tryLock函数尝试获取锁,直到获取到或超时或被中断。如果没有其他线程占有读锁和写锁,立马返回true。和4.3不一样,公平模式下会排队的。如果你又想插队又想支持超时,可以这么写:if(lock.tryLock() || lock.tryLock(timeout, unit) ) { ... }。

4.5 newCondition

public Condition newCondition() {
return sync.newCondition();
}

4.6 isHeldByCurrentThread

public boolean isHeldByCurrentThread() {
return sync.isHeldExclusively();
}

当前线程是否占有写锁。

4.7 getHoldCount

public int getHoldCount() {
return sync.getWriteHoldCount();
}

当前线程占有几个写锁。

5 Sync类

读锁和写锁公用的同步器,有两个版本:公平的和非公平的。

5.1 内部类结构

abstract static class Sync extends AbstractQueuedSynchronizer {
private static final long serialVersionUID = 6317671515068378041L;

/*
* AQS的state字段被拆成两部分了:高16位表示获取读锁的次数,低16位表示
* 获取写锁的次数
*/
static final int SHARED_SHIFT   = 16;
// 每次线程获取读锁成功就会执行state+=SHARED_UNIT操作,不是+1因为
// 高16位表示获取读锁的次数。
static final int SHARED_UNIT    = (1 << SHARED_SHIFT);
// 允许读或写获取锁的最大次数,都是65535
static final int MAX_COUNT      = (1 << SHARED_SHIFT) - 1;
static final int EXCLUSIVE_MASK = (1 << SHARED_SHIFT) - 1;

/** 获取当前读锁的总数 */
static int sharedCount(int c)    { return c >>> SHARED_SHIFT; }
/** 获取当前写锁的总数 */
static int exclusiveCount(int c) { return c & EXCLUSIVE_MASK; }

/**
* A counter for per-thread read hold counts.
* Maintained as a ThreadLocal; cached in cachedHoldCounter
*/
static final class HoldCounter {
int count = 0;
// Use id, not reference, to avoid garbage retention
final long tid = Thread.currentThread().getId();
}

/**
* 每个线程都绑定一个HoldCounter对象
*/
static final class ThreadLocalHoldCounter
extends ThreadLocal<HoldCounter> {
public HoldCounter initialValue() {
return new HoldCounter();
}
}

/**
* The number of reentrant read locks held by current thread.
* Initialized only in constructor and readObject.
* Removed whenever a thread's read hold count drops to 0.
*/
// 第一个获取读锁线程的HoldCounter没有在里面管理,而是通过firstReader
// 和firstReaderHoldCount两个变量维护的。
private transient ThreadLocalHoldCounter readHolds;
private transient HoldCounter cachedHoldCounter;
private transient Thread firstReader = null;
private transient int firstReaderHoldCount;

Sync() {
readHolds = new ThreadLocalHoldCounter();
setState(getState()); // ensures visibility of readHolds
}

/*
* Acquires and releases use the same code for fair and
* nonfair locks, but differ in whether/how they allow barging
* when queues are non-empty.
*/

/**
* Returns true if the current thread, when trying to acquire
* the read lock, and otherwise eligible to do so, should block
* because of policy for overtaking other waiting threads.
*/
abstract boolean readerShouldBlock();

/**
* Returns true if the current thread, when trying to acquire
* the write lock, and otherwise eligible to do so, should block
* because of policy for overtaking other waiting threads.
*/
abstract boolean writerShouldBlock();

5.2 tryAcquire

protected final boolean tryAcquire(int acquires) {
Thread current = Thread.currentThread();
int c = getState();
int w = exclusiveCount(c);
if (c != 0) {
// c!=0&&w==0说明有线程(包括当前线程)持有读锁,直接返回false
// c!=0&&w!=0&¤t!=当前持有锁的线程,直接返回false
// 注意:如果一个线程先获取读锁,紧接着获取写锁时会死锁的
if (w == 0 || current != getExclusiveOwnerThread())
return false;
// 写锁数量超过65535,直接抛异常了
if (w + exclusiveCount(acquires) > MAX_COUNT)
throw new Error("Maximum lock count exceeded");
// 走到这边说明这个锁是重入了的,不需要CAS了,直接设置state
setState(c + acquires);
return true;
}
// c==0或者重入的,如果写需要阻塞或者CAS设置state失败,直接返回false
if (writerShouldBlock() ||
!compareAndSetState(c, c + acquires))
return false;
// 设置独占线程标识
setExclusiveOwnerThread(current);
return true;
}

tryAcquire 函数是尝试获取写锁:1.如果有读线程或者写线程且不是当前线程,直接失败;2.如果写锁的count超过了65535,直接失败;3.否则,这个线程能够拥有锁(eligible),队列策略允许(writerShouldBlock返回false)或者是重入的锁。

5.3 tryRelease

protected final boolean tryRelease(int releases) {
if (!isHeldExclusively())
throw new IllegalMonitorStateException();
// state的高16位和低16位肯定都是大于releases的,可以直接相减
int nextc = getState() - releases;
boolean free = exclusiveCount(nextc) == 0;
// 如果当前写锁释放后没有写锁了,置空独占标识
if (free)
setExclusiveOwnerThread(null);
// 设置新的state
setState(nextc);
return free;
}

tryRelease函数一般情况下就是释放写锁,但是也有不一般的情况,就是在Condition中调用tryRelease,因此,releases参数可能会包含读和写两个锁的信息。

5.4 tryAcquireShared

protected final int tryAcquireShared(int unused) {
// 获取当前线程和state值
Thread current = Thread.currentThread();
int c = getState();
// 如果有线程持有写锁且该线程不是当前线程,直接返回-1
if (exclusiveCount(c) != 0 &&
getExclusiveOwnerThread() != current)
return -1;
int r = sharedCount(c);
if (!readerShouldBlock() &&
r < MAX_COUNT &&
compareAndSetState(c, c + SHARED_UNIT)) {
if (r == 0) {
firstReader = current;
firstReaderHoldCount = 1;
} else if (firstReader == current) {
firstReaderHoldCount++;
} else {
HoldCounter rh = cachedHoldCounter;
if (rh == null || rh.tid != current.getId())
cachedHoldCounter = rh = readHolds.get();
// 为啥等于0的时候要set下?因为release时,count=0会执行readHolds.remove
// 方法,但是不会清空cachedHoldCounter。此时,同个线程再成功获取读锁时count
// 的值是0且readHolds已经为空了,因此要重新set下。
else if (rh.count == 0)
readHolds.set(rh);
rh.count++;
}
return 1;
}
return fullTryAcquireShared(current);
}

tryAcquireShared函数的参数(unused)没有用,主要是尝试获取读锁:

1.如果有线程持有写锁,直接返回失败;

2.否则,继续判断,如果队列策略允许(readerShouldBlock返回false)获取锁且CAS设置state成功,则设置读锁count的值。这一步并没有检查读锁重入的情况,被延迟到fullTryAcquireShared里了,因为大多数情况下不是重入的;

3.如果步骤2失败了,或许是队列策略返回false或许是CAS设置失败了等,则执行fullTryAcquireShared。

final int fullTryAcquireShared(Thread current) {
HoldCounter rh = null;
// 是一个循环
for (;;) {
int c = getState();
if (exclusiveCount(c) != 0) {
// 有线程持有写锁且不是当前线程,直接失败
if (getExclusiveOwnerThread() != current)
return -1;
// else we hold the exclusive lock; blocking here
// would cause deadlock.
// 如果队列策略不允许,需要检查是否是读锁重入的情况。队列策略是否允许,分两种情况:
// 1.公平模式:如果当前AQS队列前面有等待的结点,返回false;2.非公平模式:如果
// AQS前面有线程在等待写锁,返回false(这样做的原因是为了防止写饥饿)。
} else if (readerShouldBlock()) {
// 如果当前线程是第一个获取读锁的线程,则有资格获取读锁
if (firstReader == current) {
// assert firstReaderHoldCount > 0;
} else {
if (rh == null) {
// 优先赋值成上一次获取读锁成功的cache,如果发现线程tid和当前线程不相等,在从
// ThreadLocal里获取
rh = cachedHoldCounter;
if (rh == null || rh.tid != current.getId()) {
rh = readHolds.get();
if (rh.count == 0)
// 帮助GC
readHolds.remove();
}
}
// 说明不是读锁重入的情况,直接返回失败了
if (rh.count == 0)
return -1;
}
}
if (sharedCount(c) == MAX_COUNT)
throw new Error("Maximum lock count exceeded");
if (compareAndSetState(c, c + SHARED_UNIT)) {
// 设置当前线程为第一个获取读锁的线程
if (sharedCount(c) == 0) {
firstReader = current;
firstReaderHoldCount = 1;
// 说明当前线程为第一个获取读锁的线程
} else if (firstReader == current) {
firstReaderHoldCount++;
} else {
// 其他获取读锁成功的情况
if (rh == null)
rh = cachedHoldCounter;
if (rh == null || rh.tid != current.getId())
rh = readHolds.get();
else if (rh.count == 0)
readHolds.set(rh);
rh.count++;
cachedHoldCounter = rh; // cache for release
}
return 1;
}
}
}

fullTryAcquireShared函数处理上面tryAcquireShared中没有处理的读锁重入的问题或者CAS设置失败。其实,这函数代码和tryAcquireShared有些重复,但是把处理读锁重入的问题从tryAcquireShared中分离出来了。

5.5 tryReleaseShared

protected final boolean tryReleaseShared(int unused) {
Thread current = Thread.currentThread();
// 如果当前线程是第一个获取读锁的,需要特殊处理(第一个reader不是用
// HoldCounter类型变量保存的)
if (firstReader == current) {
// assert firstReaderHoldCount > 0;
// 如果firstReaderHoldCount<=0也没报错啊(不会出现这种情况的)。
// 因为firstReaderHoldCount==1时,firstReader就是null了,条件
// firstReader==current就不会成立了
if (firstReaderHoldCount == 1)
firstReader = null;
else
firstReaderHoldCount--;
} else {
// 如果当前线程是最后一个获取锁的,就是cachedHoldCounter了
// 如果也不是最后一个获取锁的,就要从threadlocal里取了
HoldCounter rh = cachedHoldCounter;
if (rh == null || rh.tid != current.getId())
rh = readHolds.get();
int count = rh.count;
// count==1的话直接执行readHolds.remove;count<=0就报错
if (count <= 1) {
readHolds.remove();
if (count <= 0)
throw unmatchedUnlockException();
}
--rh.count;
}
for (;;) {
int c = getState();
int nextc = c - SHARED_UNIT;
if (compareAndSetState(c, nextc))
// Releasing the read lock has no effect on readers,
// but it may allow waiting writers to proceed if
// both read and write locks are now free.
// mark:当且仅当所有的读和写线程都释放锁了,才会返回true
return nextc == 0;
}
}

tryReleaseShared函数的作用就是释放读锁,需要注意两点:1、如果一个线程没有获取过读锁,执行release方法会报异常;2、当且仅当所有的读和写线程都释放了,这个函数才会返回true。

5.6 tryWriteLock

final boolean tryWriteLock() {
Thread current = Thread.currentThread();
int c = getState();
if (c != 0) {
int w = exclusiveCount(c);
// 如果有线程持有读锁(自己也不行)直接返回false
// 如果不是重入获取写锁的直接返回false
if (w == 0 || current != getExclusiveOwnerThread())
return false;
if (w == MAX_COUNT)
throw new Error("Maximum lock count exceeded");
}
// c==0或者写锁重入
if (!compareAndSetState(c, c + 1))
return false;
setExclusiveOwnerThread(current);
return true;
}

tryWriteLock函数会被写锁调用,和tryAcquire基本一致除了少调用一个writerShouldBlock函数,公平和非公平两种模式都允许插队(barging in)相当于是非公平模式了。

5.7 tryReadLock

final boolean tryReadLock() {
Thread current = Thread.currentThread();
for (;;) {
int c = getState();
// 如果有线程持有写锁且该线程不是当前线程,直接返回-1
if (exclusiveCount(c) != 0 &&
getExclusiveOwnerThread() != current)
return false;
int r = sharedCount(c);
if (r == MAX_COUNT)
throw new Error("Maximum lock count exceeded");
if (compareAndSetState(c, c + SHARED_UNIT)) {
if (r == 0) {
firstReader = current;
firstReaderHoldCount = 1;
} else if (firstReader == current) {
firstReaderHoldCount++;
} else {
HoldCounter rh = cachedHoldCounter;
if (rh == null || rh.tid != current.getId())
cachedHoldCounter = rh = readHolds.get();
else if (rh.count == 0)
readHolds.set(rh);
rh.count++;
}
return true;
}
}
}

tryReadLock函数被读锁调用(tryLock),和tryAcquireShared函数基本一致,除了少调用一个readerShouldBlock方法,公平和非公平两种模式都允许插队(barging in)相当于是非公平模式了。

6 NonfairSync类

static final class NonfairSync extends Sync {
private static final long serialVersionUID = -8159625535654395037L;
// 写线程无条件插队
final boolean writerShouldBlock() {
return false; // writers can always barge
}
final boolean readerShouldBlock() {
// 为了方式写线程饥饿的情况,如果AQS等待队里的第一个线程是独占的,
// 当前读线程就阻塞。
return apparentlyFirstQueuedIsExclusive();
}
}

非公平锁的实现类。

7 FairSync类

static final class FairSync extends Sync {
private static final long serialVersionUID = -2274990926593161451L;
// 如果AQS队列里有等待的线程,当前线程就阻塞
final boolean writerShouldBlock() {
return hasQueuedPredecessors();
}
// 如果AQS队列里有等待的线程,当前线程就阻塞
final boolean readerShouldBlock() {
return hasQueuedPredecessors();
}
}

公平锁的实现类writerShouldBlock和readerShouldBlock实现方式完全一样,只要队列里有其他线程在等待,当前线程就阻塞,FIFO模式。
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息