您的位置:首页 > 编程语言 > C#

C#中的内存分配

2016-02-17 22:16 239 查看
稍微有过C#基础的程序员都知道,值类型和引用类型在内存中的分配方式是不一样的。下面我们就来谈谈他们的具体分配过程。

1. 对值类型的分配。

虚拟内存中存在一个叫堆栈的区域,我们并不知道它到底在地址空间的什么地方,在一般开发过程中也没有必要知道,我们知道的是值类型就分配于此。值类型在堆栈上分配的时候,是自上而下填充的,也就是从高内存地址开始填充。

比如当前的堆栈指针为100000,这表明它的下一个自由存储空间从99999开始,当我们在C#中声明一个int类型的变量A,因为int类型是四个字节,所以它将分配在99996到99999这个存储单元中。如果我们接着声明double变量B(8字节),该变量将分配在99988到99995这个存储单元。 如果代码运行到他们的作用域之外,这时候A和B两个变量都将被删除,此时的顺序正好相反,先删除变量B,同时堆栈指针会递增8,也就是重新指向到99996这个位置;接下来删除变量A,堆栈指针重新指向10000。如果两个变量是同时声明的。如int A,B,此时我们并不知道A和B的分配顺序,但是编译器会确保他们的删除顺序正好和分配顺序相反。

由此可见,对于单纯的值类型来说,他们的分配方式是很好理解的。

对引用类型的分配。

了解堆栈上的分配方式之后,很明显,它的性能相当高,同时我们也发现了它的一个缺点:变量的生存期必须嵌套。这对于某些情况来说是无法接受的,有时候我们需要存储一些数据并且在方法退出后仍然能保证这部分数据是可以使用的。为此,虚拟内存另外分配了一部分区域,我们称之为托管堆。托管堆和传统的堆很大的一个不同点在于,托管堆在垃圾收集器的控制下进行工作。引用类型就分配在托管堆上,下面我们来看看引用类型的分配过程。

假设我们需要声明一个Person类并对它进行实例化。

Person p = new Person();

首先, 系统会在堆栈上给p这个变量在堆栈上分配存储空间,当然它只是一个引用而已,用来存放Person实例在托管堆上的位置,并没有存放真正的Person实例。因为它仅仅是存放一个地址(一个整数值),所以它将在堆栈上占据4个字节的空间。接下来Person实例将会被存放在托管堆上。和堆栈不同,托管堆是由下往上分配的,假设这个实例需要占据10个字节,假设托管堆上的地址为200000,那么它将分配在200000到200009这个存储单元。

需要注意的是,这个分配和实例的大小有关,如果实例小于85000字节,它会被分配在托管堆。如果超过了85000字节,它将被分配在LOH上 。

由此可见,这个分配过程比值类型的分配方式更为复杂,因此也就不可避免的有性能方面的损耗。这也是为什么对于小数据量的数据结构我们更愿意使用结构而不是类。

当然这些是比较单纯的分配方式,实际情况可能比这个复杂。比如Struct里定义一个类实例。该类实例会被分配在托管堆,而它的地址分配在堆栈上。如果类中定义了一个值类型int变量,那么该变量的值会被分配在托管堆上而不是堆栈。

在32位的Windows操作系统中,每个进程都可以使用4GB的内存,这得益于虚拟寻址技术,在这4GB的内存中存储着可执行代码、代码加载的DLL和程序运行的所有变量,在C#中,虚拟内存中有个两个存储变量的区域,一个称为堆栈,一个称为托管堆,托管堆的出现是.net不同于其他语言的地方,堆栈存储值类型数据,而托管堆存储引用类型如类、对象,并受垃圾收集器的控制和管理。在堆栈中,一旦变量超出使用范围,其使用的内存空间会被其他变量重新使用,这时其空间中存储的值将被其他变量覆盖而不复存在,但有时候我们希望这些值仍然存在,这就需要托管堆来实现。我们用几段代码来说明其工作原理,假设已经定义了一个类class1:

class1 object1;

object1=new class1();

第一句定义了一个class1的引用,实质上只是在堆栈中分配了一个4个字节的空间,它将用来存府后来实例化对象在托管堆中的地址,在windows中这需要4个字节来表示内存地址。第二句实例化object1对象,实际上是在托管堆中开僻了一个内存空间来存储类class1的一个具体对象,假设这个对象需要36个字节,那么object1指向的实际上是在托管堆一个大小为36个字节的连续内存空间开始的地址。由此也可以看出在C#编译器中为什么不允许使用未实例化的对象,因为这个对象在托管堆中还不存在。当对象不再使用时,这个被存储在堆栈中的引用变量将被删除,但是从上述机制可以看出,在托管堆中这个引用指向的对象仍然存在,其空间何时被释放取决垃圾收集器而不是引用变量失去作用域时。

在使用电脑的过程中大家可能都有过这种经验:电脑用久了以后程序运行会变得越来越慢,其中一个重要原因就是系统中存在大量内存碎片,就是因为程序反复在堆栈中创建和释入变量,久而久之可用变量在内存中将不再是连续的内存空间,为了寻址这些变量也会增加系统开销。在.net中这种情形将得到很大改善,这是因为有了垃圾收集器的工作,垃圾收集器将会压缩托管堆的内存空间,保证可用变量在一个连续的内存空间内,同时将堆栈中引用变量中的地址改为新的地址,这将会带来额外的系统开销,但是,其带来的好处将会抵消这种影响,而另外一个好处是,程序员将不再花上大量的心思在内在泄露问题上。

当然,以C#程序中不仅仅只有引用类型的变量,仍然也存在值类型和其他托管堆不能管理的对象,如果文件名柄、网络连接和数据库连接,这些变量的释放仍需要程序员通过析构函数或IDispose接口来做。

另一方面,在某些时候C#程序也需要追求速度,比如对一个含用大量成员的数组的操作,如果仍使用传统的类来操作,将不会得到很好的性能,因为数组在C#中实际是System.Array的实例,会存储在托管堆中,这将会对运算造成大量的额外的操作,因为除了垃圾收集器除了会压缩托管堆、更新引用地址、还会维护托管堆的信息列表。所幸的是C#中同样能够通过不安全代码使用C++程序员通常喜欢的方式来编码,在标记为unsafe的代码块使用指针,这和在C++中使用指针没有什么不同,变量也是存府在堆栈中,在这种情况下声明一个数组可以使用stackalloc语法,比如声明一个存储有50个double类型的数组:

double* pDouble=stackalloc double[50]

stackalloc会给pDouble数组在堆栈中分配50个double类型大小的内存空间,可以使用pDouble[0]、*(pDouble+1)这种方式操作数组,与在C++中一样,使用指针时必须知道自己在做什么,确保访问的正确的内存空间,否则将会出现无法预料的错误。
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: