您的位置:首页 > 运维架构 > Linux

对Linux CAN驱动的理解

2015-12-24 15:18 513 查看
的足迹——对Linux CAN驱动的理解(1)

在Ti的AM335X系列Cortext-A8芯片中,CAN模块采用D_CAN结构,实质即两路CAN接口。

在此分享一下对基于AM335X的Linux CAN驱动源码的理解。下面来分析它的驱动源码及其工作方式。

在Linux内核源码中,CAN设备驱动文件如下:

drivers/net/can/d_can/d_can_platform.c

drivers/net/can/d_can/d_can.c

drivers/net/can/d_can/d_can.h

首先分析d_can_platform.c文件,驱动运行时,也是先从这里开始。首先是驱动入口函数:

module_init(d_can_plat_init);

static int __init d_can_plat_init(void)

{

printk(KERN_INFO D_CAN_DRV_DESC "\n");

return platform_driver_register(&d_can_plat_driver);

}

在驱动入口函数d_can_plat_init()中,使用platform_driver_register(&d_can_plat_driver)将结构体变量d_can_plat_driver注册为平台驱动。

static struct platform_driver d_can_plat_driver = {

.driver = {

.name = D_CAN_DRV_NAME,

.owner = THIS_MODULE,

},

.probe = d_can_plat_probe,

.remove = __devexit_p(d_can_plat_remove),

};

平台驱动中,最重要的是探测函数d_can_plat_probe。探测函数主要的工作是获取平台设备传递过来的资源及初始化硬件。下面来看看d_can_plat_probe()函数都做了些什么工作。

static int __devinit d_can_plat_probe(struct platform_device *pdev)

{

int ret = 0;

void __iomem *addr;

struct net_device *ndev;

struct d_can_priv *priv;

struct resource *mem;

/* 定义d_can_platform_data结构体变量指针pdata,d_can_platform_data结构体类型与板级文件中的平台设备使用的结构体类型是一致的 */

struct d_can_platform_data *pdata;

/*获取平台设备数据*/

pdata = pdev->dev.platform_data;

if (!pdata) {

dev_err(&pdev->dev, "No platform data\n");

goto exit;

}

/* allocate the d_can device */

/*分配d_can设备,如can0、can1、…等*/

ndev = alloc_d_can_dev(pdata->num_of_msg_objs);

if (!ndev) {

ret = -ENOMEM;

dev_err(&pdev->dev, "alloc_d_can_dev failed\n");

goto exit;

}

/*获取设备私有数据*/

priv = netdev_priv(ndev);

/*获取时钟并使能*/

priv->fck = clk_get(&pdev->dev, pdata->fck_name);

if (IS_ERR(priv->fck)) {

dev_err(&pdev->dev, "%s is not found\n", pdata->fck_name);

ret = -ENODEV;

goto exit_free_ndev;

}

clk_enable(priv->fck);

/*获取时钟并使能*/

priv->ick = clk_get(&pdev->dev, pdata->ick_name);

if (IS_ERR(priv->ick)) {

dev_err(&pdev->dev, "%s is not found\n", pdata->ick_name);

ret = -ENODEV;

goto exit_free_fck;

}

clk_enable(priv->ick);

/* get the platform data */

/*获取平台内存资源*/

mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);

if (!mem) {

ret = -ENODEV;

dev_err(&pdev->dev, "No mem resource\n");

goto exit_free_clks;

}

/*申请I/O内存*/

if (!request_mem_region(mem->start, resource_size(mem),

D_CAN_DRV_NAME)) {

dev_err(&pdev->dev, "resource unavailable\n");

ret = -EBUSY;

goto exit_free_clks;

}

/*在内核中访问 I/O 内存之前,需首先使用 ioremap()函数将设备所处的物理地址映

射到虚拟地址*/

addr = ioremap(mem->start, resource_size(mem));

if (!addr) {

dev_err(&pdev->dev, "ioremap failed\n");

ret = -ENOMEM;

goto exit_release_mem;

}

/* IRQ specific to Error and status & can be used for Message Object */

ndev->irq = platform_get_irq_byname(pdev, "int0");

if (!ndev->irq) {

dev_err(&pdev->dev, "No irq0 resource\n");

goto exit_iounmap;

}

/* IRQ specific for Message Object */

priv->irq_obj = platform_get_irq_byname(pdev, "int1");

if (!priv->irq_obj) {

dev_err(&pdev->dev, "No irq1 resource\n");

goto exit_iounmap;

}

priv->base = addr;

priv->can.clock.freq = clk_get_rate(priv->fck);

priv->test_mode = pdata->test_mode_enable;

platform_set_drvdata(pdev, ndev);

SET_NETDEV_DEV(ndev, &pdev->dev);

/*注册CAN网络设备*/

ret = register_d_can_dev(ndev);

if (ret) {

dev_err(&pdev->dev, "registering %s failed (err=%d)\n",

D_CAN_DRV_NAME, ret);

goto exit_free_device;

}

dev_info(&pdev->dev, "%s device registered (irq=%d, irq_obj=%d)\n",

D_CAN_DRV_NAME, ndev->irq, priv->irq_obj);

return 0;

exit_free_device:

platform_set_drvdata(pdev, NULL);

exit_iounmap:

iounmap(addr);

exit_release_mem:

release_mem_region(mem->start, resource_size(mem));

exit_free_clks:

clk_disable(priv->ick);

clk_put(priv->ick);

exit_free_fck:

clk_disable(priv->fck);

clk_put(priv->fck);

exit_free_ndev:

free_d_can_dev(ndev);

exit:

dev_err(&pdev->dev, "probe failed\n");

return ret;

}

在d_can_plat_probe()函数中调用register_d_can_dev()注册CAN为网络设备。函数register_d_can_dev()在文件drivers/net/can/d_can/d_can.c中。通过EXPORT_SYMBOL_GPL宏导出。

int register_d_can_dev(struct net_device *dev)

{

/* we support local echo */

dev->flags |= IFF_ECHO;

dev->netdev_ops = &d_can_netdev_ops;

return register_candev(dev);

}

EXPORT_SYMBOL_GPL(register_d_can_dev);

在register_d_can_dev()函数中填充其网络设备操作函数成员dev->netdev_ops= &d_can_netdev_ops。

static const struct net_device_ops d_can_netdev_ops = {

.ndo_open = d_can_open,

.ndo_stop = d_can_close,

.ndo_start_xmit = d_can_start_xmit,

};

由于Linux的CAN驱动是写成了socket can的架构,即将其模拟成网络设备。因此我们可以借鉴操作网络设备的方法,进行socket can的应用编程。

下面我们借用一个开源的socket can工具:canconfig将CAN设备打开。相应的在内核驱动层会相应调用d_can_open()函数。

static int d_can_open(struct net_device *ndev)

{

int err;

struct d_can_priv *priv = netdev_priv(ndev);

/* Open common can device */

err = open_candev(ndev);

if (err) {

netdev_err(ndev, "open_candev() failed %d\n", err);

return err;

}

/* register interrupt handler for Message Object (MO) and Error + status change (ES) */

err = request_irq(ndev->irq, &d_can_isr, IRQF_SHARED, ndev->name,

ndev);

if (err) {

netdev_err(ndev, "failed to request MO_ES interrupt\n");

goto exit_close_candev;

}

/* register interrupt handler for only Message Object */

err = request_irq(priv->irq_obj, &d_can_isr, IRQF_SHARED, ndev->name,

ndev);

if (err) {

netdev_err(ndev, "failed to request MO interrupt\n");

goto exit_free_irq;

}

/* start the d_can controller */

// d_can_start(ndev);

napi_enable(&priv->napi);

netif_start_queue(ndev);

d_can_start(ndev); //embest

return 0;

exit_free_irq:

free_irq(ndev->irq, ndev);

exit_close_candev:

close_candev(ndev);

return err;

}
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: