您的位置:首页 > 运维架构 > Linux

关于Linux下串口通信的一点心得

2015-12-24 14:54 543 查看
1.
打开串口

与其他的关于设备编程的方法一样,在
Linux 下,操作、控制串口也是通过操作起设备文件进行的。在
Linux 下,串口的设备文件是 /dev/ttyS0 或
/dev/ttyS1 等。因此要读些串口,我们首先要打开串口:

char *dev = "/dev/ttyS0"; // 串口
1

int fd = open( dev, O_RDWR );

//| O_NOCTTY | O_NDELAY

if (-1 == fd)

{

perror("Can't Open Serial Port");

return -1;

}

else

return fd;

2.
设置串口速度

打开串口成功后,我们就可以对其进行读写了。首先要设置串口的波特率:

int speed_arr[] = { B38400, B19200, B9600, B4800, B2400, B1200, B300,

B38400, B19200, B9600, B4800, B2400, B1200, B300, };

int name_arr[] = {38400, 19200, 9600, 4800, 2400, 1200, 300, 38400,

19200, 9600, 4800, 2400, 1200, 300, };

void set_speed(int fd, int speed){

int i;

int status;

struct termios Opt;

tcgetattr(fd, &Opt);

for ( i= 0; i < sizeof(speed_arr) / sizeof(int); i++) {

if (speed == name_arr[i]) {

tcflush(fd, TCIOFLUSH);

cfsetispeed(&Opt, speed_arr[i]);

cfsetospeed(&Opt, speed_arr[i]);

status = tcsetattr(fd, TCSANOW, &Opt);

if (status != 0) {

perror("tcsetattr fd");

return;

}

tcflush(fd,TCIOFLUSH);

}

}

}

3.
设置串口信息

这主要包括:数据位、停止位、奇偶校验位这些主要的信息。

/**

*@brief 设置串口数据位,停止位和效验位

*@param fd
类型 int 打开的串口文件句柄

*@param databits
类型 int 数据位
取值 为 7 或者
8

*@param stopbits
类型 int 停止位
取值为 1 或者
2

*@param parity
类型 int 效验类型 取值为
N,E,O,,S

*/

int set_Parity(int fd,int databits,int stopbits,int parity)

{

struct termios options;

if ( tcgetattr( fd,&options) != 0) {

perror("SetupSerial 1");

return(FALSE);

}

options.c_cflag &= ~CSIZE;

options.c_lflag &= ~(ICANON | ECHO | ECHOE | ISIG); /*Input*/

options.c_oflag &= ~OPOST; /*Output*/

switch (databits) /* 设置数据位数
*/

{

case 7:

options.c_cflag |= CS7;

break;

case 8:

options.c_cflag |= CS8;

break;

default:

fprintf(stderr,"Unsupported data size\n"); return (FALSE);

}

switch (parity)

{

case 'n':

case 'N':

options.c_cflag &= ~PARENB; /* Clear parity enable */

options.c_iflag &= ~INPCK; /* Enable parity checking */

break;

case 'o':

case 'O':

options.c_cflag |= (PARODD | PARENB); /*
设置为奇效验 */

options.c_iflag |= INPCK; /* Disnable parity checking */

break;

case 'e':

case 'E':

options.c_cflag |= PARENB; /* Enable parity */

options.c_cflag &= ~PARODD; /*
转换为偶效验 */

options.c_iflag |= INPCK; /* Disnable parity checking */

break;

case 'S':

case 's': /*as no parity*/

options.c_cflag &= ~PARENB;

options.c_cflag &= ~CSTOPB;break;

default:

fprintf(stderr,"Unsupported parity\n");

return (FALSE);

}

/* 设置停止位
*/

switch (stopbits)

{

case 1:

options.c_cflag &= ~CSTOPB;

break;

case 2:

options.c_cflag |= CSTOPB;

break;

default:

fprintf(stderr,"Unsupported stop bits\n");

return (FALSE);

}

/* Set input parity option */

if (parity != 'n')

options.c_iflag |= INPCK;

tcflush(fd,TCIFLUSH);

options.c_cc[VTIME] = 0; /*
设置超时 0 seconds*/

options.c_cc[VMIN] = 13; /* define the minimum bytes data to be readed*/

if (tcsetattr(fd,TCSANOW,&options) != 0)

{

perror("SetupSerial 3");

return (FALSE);

}

return (TRUE);

}

在上述代码中,有两句话特别重要:

options.c_cc[VTIME] = 0; /*
设置超时 0 seconds*/

options.c_cc[VMIN] = 13; /* define the minimum bytes data to be readed*/

这两句话决定了对串口读取的函数
read() 的一些功能。我将着重介绍一下他们对 read() 函数的影响。

对串口操作的结构体是

Struct{

tcflag_t c_iflag; /* 输入模式标记
*/

tcflag_t c_oflag; /* 输出模式标记
*/

tcflag_t c_cflag; /* 控制模式标记
*/

tcflag_t c_lflag; /* 本地模式标记
*/

cc_t c_line; /* 线路规程
*/

cc_t c_cc[NCCS]; /* 控制符号
*/

} ;

其中 cc_t c_line 只有在一些特殊的系统程序
( 比如,设置通过
tty 设备来通信的网络协议 ) 中才会用。在数组
c_cc 中有两个下标
(VTIME 和 VMIN) 对应的元素不是控制符,并且只是在原始模式下有效。只有在原始模式下,他们决定了
read() 函数在什么时候返回。在标准模式下,除非设置了
O_NONBLOCK 选项,否则只有当遇到文件结束符或各含的字符都已经编辑完毕后才返回。

控制符 VTIME 和
VMIN 之间有着复杂的关系。
VTIME 定义要求等待的零到几百号妙的是间量 ( 通常是一个
8 位的
unsigned char 变量,取值不能大于 cc_t) 。
VMIN 定义了要求等待的最小字节数
( 不是要求读的字节数—— read() 的第三个参数才是指定要求读的最大字节数
) ,这个字节数可能是
0 。

l 如果
VTIME 取
0 , VMIN 定义了要求等待读取的最小字节数。函数
read() 只有在读取了
VMIN 个字节的数据或者收到一个信号的时候才返回。

l 如果
VMIN 取
0 , VTIME 定义了即使没有数据可以读取,
read() 函数返回前也要等待几百毫秒的时间量。这时, read() 函数不需要像其通常情况那样要遇到一个文件结束标志才返回
0 。

l 如果
VTIME 和
VMIN 等不取 0 ,
VTIME 定义的时当接收到底一个自己的数据后开始计算等待的时间量。如果当调用
read 函数时可以得到数据,计时器马上开始计时。如果但调用 read 函数时还没有任何数据可读,则等接收到底一个字节的数据后,计时器开始计时。函数
read 可能会在读取到
VMIN 个字节的数据后返回,也可能在计时完毕后返回,这主要取决于哪个条件首先实现。不过函数至少会读取到一个字节的数据,因为计时器是在读取到第一个数据时开始计时的。

l 如果
VTIME 和
VMIN 都取 0 ,即使读取不到任何数据,函数
read 也会立即返回。同时,返回值 0 表示
read 函数不需要等待文件结束标志就返回了。

这就是这两个变量对
read 函数的影响。我使用的读卡器每次传送的数据是
13 个字节,一开始,我把它们设置成

options.c_cc[VTIME] = 150

options.c_cc[VMIN] = 0;

结果,每次读取的信息只有
8 个字节,剩下的
5
个字节要等到下一次打卡时才能收到。就是由于这个原因造成的。根据上面规则的第一条,我把
VTIME 取
0
, VMIN=13
,也就是正好等于一次需要接收的字节数。这样就实现了一次读取
13 个字节值。同时,得出这样的结论,如果读卡器送出的数据为
n
个字节,那么就把 VMIN=n
,这样一次读取的信息正好为读卡器送出的信息,并且读取的时候不需要进行循环读取。

4.
读取数据

有了上面的函数后,我们设置了串口的基本信息,根据我们自己的实际情况,设置了相应的参数,就可以读取数据了。

void getcardinfo(char *buff){

int fd;

int nread,count=0;

char tempbuff[13];

char *dev = "/dev/ttyS0"; // 串口
1

fd = OpenDev(dev);

set_speed(fd,9600);

if (set_Parity(fd,8,1,'N') == FALSE) {

printf("Set Parity Error\n");

//return -1;

}

while (1) // 循环读取数据

{

count=0;

//sleep(5000);

while(1)

{

if((nread = read(fd, tempbuff, 13))>0)

{

//printf("\nLen %d\n",nread);

memcpy(&buff[count],tempbuff,nread);

count+=nread;

}

if(count==13)

{

buff[count+1] = '\0';

//printf( "\n%s", buff);

break;

}

}

//break;

}

//return buff;

close(fd);

pthread_exit(NULL);

//close(fd);

// exit (0);

}

这是我原来的程序,其实把
VMIN 设置以后,可以改成:

void getcardinfo(char *buff){

int fd;

int nread,count=0;

char tempbuff[13];

char *dev = "/dev/ttyS0"; // 串口
1

fd = OpenDev(dev);

set_speed(fd,9600);

if (set_Parity(fd,8,1,'N') == FALSE) {

printf("Set Parity Error\n");

//return -1;

}

nread = read(fd, buff, 13)

close(fd);

}

5.
程序完整代码:

#include <stdio.h> /* 标准输入输出定义
*/

#include <stdlib.h> /* 标准函数库定义
*/

#include <unistd.h> /*Unix
标准函数定义 */

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h> /* 文件控制定义
*/

#include <termios.h> /*PPSIX
终端控制定义 */

#include <errno.h> /* 错误号定义
*/

#define FALSE -1

#define TRUE 0

/**

*@brief 设置串口通信速率

*@param fd 类型
int 打开串口的文件句柄

*@param speed 类型
int 串口速度

*@return void

*/

int speed_arr[] = { B38400, B19200, B9600, B4800, B2400, B1200, B300,

B38400, B19200, B9600, B4800, B2400, B1200, B300, };

int name_arr[] = {38400, 19200, 9600, 4800, 2400, 1200, 300, 38400,

19200, 9600, 4800, 2400, 1200, 300, };

void set_speed(int fd, int speed){

int i;

int status;

struct termios Opt;

tcgetattr(fd, &Opt);

for ( i= 0; i < sizeof(speed_arr) / sizeof(int); i++) {

if (speed == name_arr[i]) {

tcflush(fd, TCIOFLUSH);

cfsetispeed(&Opt, speed_arr[i]);

cfsetospeed(&Opt, speed_arr[i]);

status = tcsetattr(fd, TCSANOW, &Opt);

if (status != 0) {

perror("tcsetattr fd");

return;

}

tcflush(fd,TCIOFLUSH);

}

}

}

/**

*@brief 设置串口数据位,停止位和效验位

*@param fd 类型
int 打开的串口文件句柄

*@param databits 类型
int 数据位 取值 为
7 或者 8

*@param stopbits 类型
int 停止位 取值为
1 或者 2

*@param parity 类型
int 效验类型 取值为 N,E,O,,S

*/

int set_Parity(int fd,int databits,int stopbits,int parity)

{

struct termios options;

if ( tcgetattr( fd,&options) != 0) {

perror("SetupSerial 1");

return(FALSE);

}

options.c_cflag &= ~CSIZE;

options.c_lflag &= ~(ICANON | ECHO | ECHOE | ISIG); /*Input*/

options.c_oflag &= ~OPOST; /*Output*/

switch (databits) /* 设置数据位数
*/

{

case 7:

options.c_cflag |= CS7;

break;

case 8:

options.c_cflag |= CS8;

break;

default:

fprintf(stderr,"Unsupported data size\n"); return (FALSE);

}

switch (parity)

{

case 'n':

case 'N':

options.c_cflag &= ~PARENB; /* Clear parity enable */

options.c_iflag &= ~INPCK; /* Enable parity checking */

break;

case 'o':

case 'O':

options.c_cflag |= (PARODD | PARENB); /*
设置为奇效验 */

options.c_iflag |= INPCK; /* Disnable parity checking */

break;

case 'e':

case 'E':

options.c_cflag |= PARENB; /* Enable parity */

options.c_cflag &= ~PARODD; /*
转换为偶效验 */

options.c_iflag |= INPCK; /* Disnable parity checking */

break;

case 'S':

case 's': /*as no parity*/

options.c_cflag &= ~PARENB;

options.c_cflag &= ~CSTOPB;break;

default:

fprintf(stderr,"Unsupported parity\n");

return (FALSE);

}

/* 设置停止位
*/

switch (stopbits)

{

case 1:

options.c_cflag &= ~CSTOPB;

break;

case 2:

options.c_cflag |= CSTOPB;

break;

default:

fprintf(stderr,"Unsupported stop bits\n");

return (FALSE);

}

/* Set input parity option */

if (parity != 'n')

options.c_iflag |= INPCK;

tcflush(fd,TCIFLUSH);

options.c_cc[VTIME] = 0; /* 设置超时
15 seconds*/

options.c_cc[VMIN] = 13; /* define the minimum bytes data to be readed*/

if (tcsetattr(fd,TCSANOW,&options) != 0)

{

perror("SetupSerial 3");

return (FALSE);

}

return (TRUE);

}

/**********************************************************************

代码说明:使用串口一测试的,发送的数据是字符,

但是没有发送字符串结束符号,所以接收到后,后面加上了结束符号

**********************************************************************/

/*********************************************************************/

int OpenDev(char *Dev)

{

int fd = open( Dev, O_RDWR );

//| O_NOCTTY | O_NDELAY

if (-1 == fd)

{

perror("Can't Open Serial Port");

return -1;

}

else

return fd;

}

void getcardinfo(char *buff){

int fd;

int nread,count=0;

char tempbuff[13];

char *dev = "/dev/ttyS0"; // 串口
1

fd = OpenDev(dev);

set_speed(fd,9600);

if (set_Parity(fd,8,1,'N') == FALSE) {

printf("Set Parity Error\n");

//return -1;

}

while (1) // 循环读取数据

{

count=0;

//sleep(5000);

while(1)

{

if((nread = read(fd, tempbuff, 13))>0)

{

//printf("\nLen %d\n",nread);

memcpy(&buff[count],tempbuff,nread);

count+=nread;

}

if(count==13)

{

buff[count+1] = '\0';

//printf( "\n%s", buff);

break;

}

}

//break;

}

//return buff;

close(fd);

pthread_exit(NULL);

//close(fd);

// exit (0);

}
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: