您的位置:首页 > 编程语言 > Java开发

JDK7和JDK8中HashMap的结构优化

2015-12-21 17:04 786 查看
JDK8对HashMap做了较大的改动和优化,在以前的HashMap上,是通过hash映射+装填因子来实现的,每个桶都接了相应的链表,当hash映射不均匀,大量key都映射到同一个桶下的链表里,这时候,元素数量到达临界值时,此时map中元素较多,发生冲突的可能性较大,此时rehash。

在7下的实现:有几个关键的变量:

threshold:临界值,即map的capacity * loadFactor的值,每次扩容时capacity 2倍后的值

loadFactorL:0.75f装填因子

size:实际key-value元素个数

capacity:map的Entry数组大小,初始化为16

简单说下实现,初始化map的时候,Entry[] table 数组的大小为16,装填因子为0.75f,在put对象的时候,首先计算k的hash值,然后根据hash值得到所在桶的数组下标,映射方式为 i = hash&(table.length-1),得到下标后,遍历对应桶数组的链表,如果相同则修改并返回old值,不存在同一个对象,则创建新的Entry,在创建之前,会进行一下判断:

public V put(K key, V value) {
if (key == null)
return putForNullKey(value);
int hash = hash(key);
int i = indexFor(hash, table.length);
for (Entry<K, V> e = table[i]; e != null; e = e.next) {
Object k;
if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
V oldValue = e.value;
e.value = value;
e.recordAccess(this);
return oldValue;
}
}

modCount++;
addEntry(hash, key, value, i);
return null;
}
void addEntry(int hash, K key, V value, int bucketIndex) {
if ((size >= threshold) && (null != table[bucketIndex])) {
resize(2 * table.length);
hash = (null != key) ? hash(key) : 0;
bucketIndex = indexFor(hash, table.length);
}

createEntry(hash, key, value, bucketIndex);


先判断所有元素个数是否已经达到临界值(capacity * loadFactor),若已达临界值,则将table的容量扩大两倍(两倍时,hash需要移动的数量最少),然后rehash(头插法),之后将目的元素采用头插法放入到链表中(即桶数组下标为i的位置),使用头插法是为了避免再次遍历链表。这种方法,避免了hash桶上的链表过长的情况,即极端情况下,hash冲突映射到同一个桶。



以上图片是对7中HashMap的简单描述,这里只是形象的描述,并不准确,hash桶数量以及rehash后的位置并没有计算,这里只是形象的说明一下。

我们继续看下JDK8对HasnMap的改进,其中,几个重要的因子还是一样的。只是对HashMap的结构进行了改进。简单的来说,就是新增了TreeNode节点类型,在链表长度增加到一定值时,将链表改为红黑数结构(这种优化对极端情况下的复杂度,为OLogN)。

新增属性有:

/**
* The bin count threshold for using a tree rather than list for a
* bin.  Bins are converted to trees when adding an element to a
* bin with at least this many nodes. The value must be greater
* than 2 and should be at least 8 to mesh with assumptions in
* tree removal about conversion back to plain bins upon
* shrinkage.
*/
static final int TREEIFY_THRESHOLD = 8;

/**
* The bin count threshold for untreeifying a (split) bin during a
* resize operation. Should be less than TREEIFY_THRESHOLD, and at
* most 6 to mesh with shrinkage detection under removal.
*/
static final int UNTREEIFY_THRESHOLD = 6;
从注释我们可以看出,这两个因素决定了何时将链表rehash为红黑树。

我们先从构造函数看起。

public HashMap() {
this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
}
这里只是初始化了0.75f的装填因子,而其余一些初始化信息会首次在put时完成。

public V put(K key, V value) {
return putVal(hash(key), key, value, false, true);
}
static final int hash(Object key) {
int h;
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
else {
Node<K,V> e; K k;
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
else if (p instanceof TreeNode)
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
else {
for (int binCount = 0; ; ++binCount) {
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
++modCount;
if (++size > threshold)
resize();
afterNodeInsertion(evict);
return null;
}


final Node<K,V>[] resize() {
Node<K,V>[] oldTab = table;
int oldCap = (oldTab == null) ? 0 : oldTab.length;
int oldThr = threshold;
int newCap, newThr = 0;
if (oldCap > 0) {
if (oldCap >= MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return oldTab;
}
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
newThr = oldThr << 1; // double threshold
}
else if (oldThr > 0) // initial capacity was placed in threshold
newCap = oldThr;
else {               // zero initial threshold signifies using defaults
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
if (newThr == 0) {
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
threshold = newThr;
@SuppressWarnings({"rawtypes","unchecked"})
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
table = newTab;
if (oldTab != null) {
for (int j = 0; j < oldCap; ++j) {
Node<K,V> e;
if ((e = oldTab[j]) != null) {
oldTab[j] = null;
if (e.next == null)
newTab[e.hash & (newCap - 1)] = e;
else if (e instanceof TreeNode)
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
else { // preserve order
Node<K,V> loHead = null, loTail = null;
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;
do {
next = e.next;
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}


首次put时,Entry[] table数组为null,初始化此数组为16的长度,然后将临界值threshold设置为16*0.75f = 12,每次两倍扩展数组时,都会重新计算threshold的值。完成这些初始化后,会计算出hash值,然后和7中一样,hash&(table.length-1)就是数组下标,然后创建链表节点,并将引用赋值给table[i]。之后每次pput节点时,若目标数组i为空,则直接创建新节点,并将引用赋值给table[i],否则,若table[i]和put节点的hash和对象都相同则直接
替换,若不满足,则查看table[i]是哪种节点类型,若是树节点,则调用table[i]的

putTreeVal方法将节点插入树中,不是树节点则是链表节点,遍历table[i]所指向的链表,当数量到达8的时候,将链表修改为红黑树并将节点插入,否则,链表数量尚未达到8,不需要重构为红黑树,则将节点插在链表尾部。
if (++size > threshold)
resize();

最后校验所有元素数量是否大于临界值,是的话则resize,将数组扩展为2。将链表优化为树,在最坏的情况下,将7版本中HashMap的复杂度从O(n)优化为了O(logN)。

从网上找到了一张JDK8版本的HashMap的图片,放在这里算是补充说明吧。

内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: