您的位置:首页 > 理论基础 > 数据结构算法

数据结构例程——二叉树的构造

2015-10-20 05:29 603 查看
本文是数据结构基础系列(6):树和二叉树中第13课时二叉树的构造的例程。

1.由先序序列和中序序列构造二叉树

定理:任何n(n≥0)个不同节点的二叉树,都可由它的中序序列和先序序列唯一地确定。

证明(数学归纳法)

基础:当n=0时,二叉树为空,结论正确。

假设:设节点数小于n的任何二叉树,都可以由其先序序列和中序序列唯一地确定。

归纳:已知某棵二叉树具有n(n>0)个不同节点,其先序序列是a0a1…an−1;中序序列是b0b1…bk−1bkbk+1…bn−1。

先序遍历“根-左-右”,a0必定是二叉树的根节点

a0必然在中序序列中出现,设在中序序列中必有某个bk(0≤k≤n−1)就是根节点a0。



由于bk是根节点,中序遍历“左-根-右”,故中序序列中b0b1…bk−1必是根节点bk(a0)左子树的中序序列,即bk的左子树有k个节点,bk+1…bn−1必是根节点bk(a0)右子树的中序序列,即bk的右子树有n−k−1个节点。

对应先序序列,紧跟在根节点a0之后的k个节点a1…ak是左子树的先序序列,ak+1…an−1这n−k−1就是右子树的先序序列。



根据归纳假设,子先序序列a1…ak和子中序序列b0b1…bk−1可以唯一地确定根节点a0的左子树,而先序序列ak+1…an−1和子中序序列bk+1…bn−1可以唯一地确定根节点a0的右子树。

综上所述,这棵二叉树的根节点己经确定,而且其左、右子树都唯一地确定了,所以整个二叉树也就唯一地确定了。





根据定理的证明,写出下面的算法。

品味:以上构造性证明是突出体现计算机科学的案例。计算机学科的精髓就在于制造,即使在“理论性”味道的定理中,其证明过程,给出的就是“存在的这么一个东西”的构造方法。

[参考解答](btreee.h见算法库

#include <stdio.h>
#include <malloc.h>
#include "btree.h"

BTNode *CreateBT1(char *pre,char *in,int n)
/*pre存放先序序列,in存放中序序列,n为二叉树结点个数,
本算法执行后返回构造的二叉链的根结点指针*/
{
BTNode *s;
char *p;
int k;
if (n<=0) return NULL;
s=(BTNode *)malloc(sizeof(BTNode));     //创建二叉树结点*s
s->data=*pre;
for (p=in; p<in+n; p++)                 //在中序序列中找等于*ppos的位置k
if (*p==*pre)                       //pre指向根结点
break;                          //在in中找到后退出循环
k=p-in;                                 //确定根结点在in中的位置
s->lchild=CreateBT1(pre+1,in,k);        //递归构造左子树
s->rchild=CreateBT1(pre+k+1,p+1,n-k-1); //递归构造右子树
return s;
}

int main()
{
ElemType pre[]="ABDGCEF",in[]="DGBAECF";
BTNode *b1;
b1=CreateBT1(pre,in,7);
printf("b1:");
DispBTNode(b1);
printf("\n");
return 0;
}


2.由后序序列和中序序列构造二叉树

定理:任何n(n>0)个不同节点的二叉树,都可由它的中序序列和后序序列唯一地确定。

证明:(略)



[参考解答](btreee.h见算法库

#include <stdio.h>
#include <malloc.h>
#include "btree.h"

BTNode *CreateBT2(char *post,char *in,int n)
/*post存放后序序列,in存放中序序列,n为二叉树结点个数,
本算法执行后返回构造的二叉链的根结点指针*/
{
BTNode *s;
char r,*p;
int k;
if (n<=0) return NULL;
r=*(post+n-1);                          //根结点值
s=(BTNode *)malloc(sizeof(BTNode));     //创建二叉树结点*s
s->data=r;
for (p=in; p<in+n; p++)                 //在in中查找根结点
if (*p==r)
break;
k=p-in;                                 //k为根结点在in中的下标
s->lchild=CreateBT2(post,in,k);         //递归构造左子树
s->rchild=CreateBT2(post+k,p+1,n-k-1);  //递归构造右子树
return s;
}

int main()
{
ElemType in[]="DGBAECF",post[]="GDBEFCA";
BTNode *b2;
b2=CreateBT2(post,in,7);
printf("b2:");
DispBTNode(b2);
printf("\n");
return 0;
}


3.由顺序存储结构转为二叉链存储结构



[参考解答](btreee.h见算法库

#include <stdio.h>
#include <malloc.h>
#include "btree.h"
#define N 30
typedef ElemType SqBTree
;
BTNode *trans(SqBTree a,int i)
{
BTNode *b;
if (i>N)
return(NULL);
if (a[i]=='#')
return(NULL);           //当节点不存在时返回NULL
b=(BTNode *)malloc(sizeof(BTNode)); //创建根节点
b->data=a[i];
b->lchild=trans(a,2*i);                 //递归创建左子树
b->rchild=trans(a,2*i+1);               //递归创建右子树
return(b);                              //返回根节点
}
int main()
{
BTNode *b;
ElemType s[]="0ABCD#EF#G####################";
b=trans(s,1);
printf("b:");
DispBTNode(b);
printf("\n");
return 0;
}
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签:  数据结构 二叉树