您的位置:首页 > 编程语言 > C#

C#高级编程五十八天----并行集合

2015-07-27 17:13 459 查看
并行集合

对于并行任务,与其相关紧密的就是对一些共享资源,数据结构的并行访问.经常要做的就是对一些队列进行加锁-解锁,然后执行类似插入,删除等等互斥操作. .NET4提供了一些封装好的支持并行操作数据容器,可以减少并行编程的复杂程度.



并行集合的命名空间:System.Collections.Concurrent

并行容器:

ConcurrentQueue

ConcurrentStack

ConcurrentBag: 一个无序的数据结构集,当不考虑顺序时非常有用.

BlockingCollection:与经典的阻塞队列数据结构类似

ConcurrentDictoinary



以上这些集合在某种程度上使用了无锁技术(CAS和内存屏蔽),与加互斥锁相比获得了性能的提升.但是在串行程序中,最好不要使用这些集合,他们必然会影响性能.



ConcurrentQueue用法与实例

其完全无锁,但当CAS面临资源竞争失败时可能会陷入自旋并重试操作.

Enqueue:在队尾插入元素

TryDequeue:尝试删除对头元素,并通过out参数返回

TryPeek:尝试将对头元素通过out参数返回,但不删除元素

案例:

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

using System.Collections.Concurrent;

namespace 并行结合Queue

{

class Program

{

internal static ConcurrentQueue<int> _TestQueue;

class ThreadWork1 //生产者

{

public ThreadWork1()

{ }

public void run()

{

Console.WriteLine("ThreadWork1 run { ");

for (int i = 0; i < 100; i++)

{

Console.WriteLine("ThreadWork1 producer: "+i);

_TestQueue.Enqueue(i);

}

Console.WriteLine("ThreadWork1 run } ");

}

}

class ThreadWork2 //consumer

{

public ThreadWork2()

{ }

public void run()

{

int i = 0;

bool IsDequeue = false;

Console.WriteLine("ThreadWork2 run { ");

for (; ; )

{

IsDequeue = _TestQueue.TryDequeue(out i);

if (IsDequeue)

{

System.Console.WriteLine("ThreadWork2 consumer: " + i * i + " =====");

}

if (i==99)

{

break;

}

}

Console.WriteLine("ThreadWork2 run } ");

}

}

static void StartT1()

{

ThreadWork1 work1 = new ThreadWork1();

work1.run();

}



static void StartT2()

{

ThreadWork2 work2 = new ThreadWork2();

work2.run();

}

static void Main(string[] args)

{

Task t1 = new Task(() => StartT1());

Task t2 = new Task(() => StartT2());



_TestQueue = new ConcurrentQueue<int>();



Console.WriteLine("Sample 3-1 Main {");



Console.WriteLine("Main t1 t2 started {");

t1.Start();

t2.Start();

Console.WriteLine("Main t1 t2 started }");



Console.WriteLine("Main wait t1 t2 end {");

Task.WaitAll(t1, t2);

Console.WriteLine("Main wait t1 t2 end }");



Console.WriteLine("Sample 3-1 Main }");



Console.ReadKey();

}

}

}



ConcurrentStact

其完全无锁,但当CAS面临资源竞争失败时可能会陷入自旋并重试操作.

Push:向栈顶插入元素

TryPop:从栈顶弹出元素,并且通过out参数返回

TryPeek:返回栈顶元素,但不弹出



案例:

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

using System.Collections.Concurrent;

namespace 并行结合Queue

{

class Program

{

internal static ConcurrentStack<int> _TestStack;

class ThreadWork1 //生产者

{

public ThreadWork1()

{ }

public void run()

{

Console.WriteLine("ThreadWork1 run { ");

for (int i = 0; i < 100; i++)

{

Console.WriteLine("ThreadWork1 producer: "+i);

_TestStack.Push(i);

}

Console.WriteLine("ThreadWork1 run } ");

}

}

class ThreadWork2 //consumer

{

public ThreadWork2()

{ }

public void run()

{

int i = 0;

bool IsDequeue = false;

Console.WriteLine("ThreadWork2 run { ");

for (; ; )

{

IsDequeue = _TestStack.TryPop(out i);

if (IsDequeue)

{

System.Console.WriteLine("ThreadWork2 consumer: " + i * i + " =====" + i);

}

if (i==99)

{

break;

}

}

Console.WriteLine("ThreadWork2 run } ");

}

}

static void StartT1()

{

ThreadWork1 work1 = new ThreadWork1();

work1.run();

}



static void StartT2()

{

ThreadWork2 work2 = new ThreadWork2();

work2.run();

}

static void Main(string[] args)

{

Task t1 = new Task(() => StartT1());

Task t2 = new Task(() => StartT2());



_TestStack = new ConcurrentStack<int>();



Console.WriteLine("Sample 4-1 Main {");



Console.WriteLine("Main t1 t2 started {");

t1.Start();

t2.Start();

Console.WriteLine("Main t1 t2 started }");



Console.WriteLine("Main wait t1 t2 end {");

Task.WaitAll(t1, t2);

Console.WriteLine("Main wait t1 t2 end }");



Console.WriteLine("Sample 4-1 Main }");



Console.ReadKey();

}

}

}





ConcurrentBag

一个无序的集合,程序可以向其中插入元素,或删除元素.

在同一个线程中向集合插入,删除元素效率很高.

Add:向集合中插入元素

TryTake:从集合中取出元素并删除

TryPeek:从集合中取出元素,但不删除元素



案例:

using System;

using System.Collections.Concurrent;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;



namespace 并行集合ConcurrentBag

{

class Program

{

internal static ConcurrentBag<int> _TestBag;

class ThreadWork1 //producer

{

public ThreadWork1()

{ }

public void run()

{

Console.WriteLine("Threadwork1 run { ");

for (int i = 0; i < 100; i++)

{

Console.WriteLine("ThreadWork1 producer: "+i);

_TestBag.Add(i);

}

Console.WriteLine("ThreadWork1 run } ");

}

}

class ThreadWork2//consumer

{

public ThreadWork2()

{ }

public void run()

{

bool IsDequeue = false;

Console.WriteLine("ThreadWork2 run { ");

for (int i = 0; i < 100; i++)

{

IsDequeue = _TestBag.TryTake(out i);

if (IsDequeue)

{

Console.WriteLine("ThreadWork2 consumer: " + i * i + "======" + i);

}

}

Console.WriteLine("ThreadWork2 run } ");

}

}

static void Start1()

{

ThreadWork1 work1 = new ThreadWork1();

work1.run();

}

static void Start2()

{

ThreadWork2 work2 = new ThreadWork2();

work2.run();

}

static void Main(string[] args)

{

Task t1 = new Task(() => Start1());

Task t2 = new Task(() => Start2());

_TestBag = new ConcurrentBag<int>();

t1.Start();

t2.Start();

Console.WriteLine("Main t1 t2 started }");



Console.WriteLine("Main wait t1 t2 end {");

Task.WaitAll(t1, t2);

Console.WriteLine("Main wait t1 t2 end }");



Console.WriteLine("Sample 4-3 Main }");



Console.ReadKey();

}

}

}







BlockingCollection

一个支持界限和阻塞的容器

Add:向容器中插入元素

TryTake:从容器中取出元素并删除

TryPeek:从容器中取出元素,但不删除

CompleteAdding:告诉容器,添加元素完成.此时如果还想继续添加会发生异常.

IsCompleted:告诉消费者线程,产生者线程还在继续运行中,任务还未完成.



案例:

程序中,消费者线程完全使用While(!__testCollection.IsCompleted)作为退出运行的判断条件.在Work1中,有两条语句被注释了,当i为50时设置为CompleteAdding,但当继续向其中插入元素时,系统抛出异常,提示无法再继续插入.

案例:

using System;

using System.Collections.Concurrent;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;



namespace 并行结合Collection

{

class Program

{

internal static BlockingCollection<int> _testBCollection;

class ThreadWork1 //producer

{

public ThreadWork1()

{ }

public void run()

{

Console.WriteLine("ThreadWork1 run { ");

for (int i = 0; i < 100; i++)

{

Console.WriteLine("ThreadWork1 producer: "+i);

_testBCollection.Add(i);

//当i为50时设置为CompleteAdding,但当继续向其中插入元素时,系统抛出异常,提示无法再继续插入.

//if (i==50)

//{

// _testBCollection.CompleteAdding();

//}

}

_testBCollection.CompleteAdding();

Console.WriteLine("ThreadWork1 run } ");

}

}

class ThreadWork2//consumer

{

public ThreadWork2()

{ }

public void run()

{

int i = 0;



bool IsDequeue = false;

Console.WriteLine("ThreadWork2 run { ");

while (!_testBCollection.IsCompleted)

{

//不明白这里为啥i会自动的++

//Console.WriteLine("i=================="+i);

IsDequeue = _testBCollection.TryTake(out i);

if (IsDequeue)

{

Console.WriteLine("ThreadWork2 consumer: "+i*i+"====="+i);

//i++;这句话不加还是会出现自动++的操作

}

}

}

}

static void StartT1()

{

ThreadWork1 work1 = new ThreadWork1();

work1.run();

}



static void StartT2()

{

ThreadWork2 work2 = new ThreadWork2();

work2.run();

}

static void Main(string[] args)

{



Task t1 = new Task(() => StartT1());

Task t2 = new Task(() => StartT2());



_testBCollection = new BlockingCollection<int>();



Console.WriteLine("Sample 4-4 Main {");



Console.WriteLine("Main t1 t2 started {");

t1.Start();

t2.Start();

Console.WriteLine("Main t1 t2 started }");



Console.WriteLine("Main wait t1 t2 end {");

Task.WaitAll(t1, t2);

Console.WriteLine("Main wait t1 t2 end }");



Console.WriteLine("Sample 4-4 Main }");



Console.ReadKey();

}

}

}



分析://_testBCollection.CompleteAdding();//这句话注释掉work2陷入循环,无法退出



ConcurrentDictionary

对于读操作是完全无锁的,当很多线程要修改数据时,它会使用细粒度的锁.

AddOrUpdate:如果键不存在,方法会在容器中添加新的键和值,如果存在,则更新现有的键和值

GetOrAdd:如果键不存在,方法会向容器中添加新的键和值,如果存在则返回现有的值,并不添加新值.

TryAdd:尝试在容器中添加新的键和值

TryGetValue:尝试根据指定的键获得值

TryUpdate:有条件的更新当前键所对应的值

TryRemove:尝试删除指定的键.

Getenumerator:返回一个能够遍历整个容器的枚举器.

案例:

using System;

using System.Collections.Concurrent;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;



namespace 并行集合Dictionary

{

class Program

{

internal static ConcurrentDictionary<int, int> _TestDictionary;

class ThreadWork1//producer

{

public ThreadWork1()

{ }

public void run()

{

System.Console.WriteLine("ThreadWork1 run { ");

for (int i = 0; i < 100; i++)

{

System.Console.WriteLine("ThreadWork1 producer: " + i);

_TestDictionary.TryAdd(i, i);

}

System.Console.WriteLine("ThreadWork1 run } ");

}

}

class ThreadWork2//consumer

{

public ThreadWork2()

{ }

public void run()

{

bool IsOk = false;

Console.WriteLine("ThreadWork2 run { ");

int nCnt = 0,i=0,nValue=0;

while (nCnt<100)

{

IsOk = _TestDictionary.TryGetValue(i,out nValue);

if (IsOk)

{

Console.WriteLine("ThreadWork2 consumer: "+i*i+"====="+i);

nValue *= nValue;

nCnt++;

i++;

}

}

Console.WriteLine("ThreadWork2 run } ");

}



}

static void StartT1()

{

ThreadWork1 work1 = new ThreadWork1();

work1.run();

}



static void StartT2()

{

ThreadWork2 work2 = new ThreadWork2();

work2.run();

}

static void Main(string[] args)

{

Task t1 = new Task(() => StartT1());

Task t2 = new Task(() => StartT2());

bool bIsNext = true;

int nValue = 0;

_TestDictionary = new ConcurrentDictionary<int, int>();

Console.WriteLine("Sample 4-5 Main {");



Console.WriteLine("Main t1 t2 started {");

t1.Start();

t2.Start();

Console.WriteLine("Main t1 t2 started }");



Console.WriteLine("Main wait t1 t2 end {");

Task.WaitAll(t1, t2);

Console.WriteLine("Main wait t1 t2 end }");



foreach (var pair in _TestDictionary)

{

Console.WriteLine(pair.Key + " : " + pair.Value);

}

IEnumerator<KeyValuePair<int, int>> enumer = _TestDictionary.GetEnumerator();



while (bIsNext)

{

bIsNext = enumer.MoveNext();

Console.WriteLine("Key: " + enumer.Current.Key +" Value: " + enumer.Current.Value);

_TestDictionary.TryRemove(enumer.Current.Key, out nValue);

}

Console.WriteLine("\n\nDictionary Count: " + _TestDictionary.Count);



Console.WriteLine("Sample 4-5 Main }");



Console.ReadKey();

}

}

}



总结说明: .NET4包含的新命名空间System.Collection,Concurrent有几个线程安全的集合类.线程安全的集合可防止多个线程以相互冲突的方式访问集合.



为了对集合进行线程安全的访问,定义了IPriducerConsumerCollection<T>接口.这个接口中最重要的方法是TryAdd()和TryTake().TryAdd()方法尝试给集合添加一项,但如果集合禁止添加项,这个操作可能失败.为了给出相关信息,TryAdd()方法返回一个布尔值,以说明操作是成功还是失败.TryTake()方法也以这种方式工作,以通过调用者操作是成功还是失败,并在操作成功时返回集合中的项.
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: