您的位置:首页 > 运维架构 > Linux

【Linux 1.0内核源码剖析】创建进程——fork.c

2015-06-04 21:26 721 查看
由于Linux0.11很多模块尚未跟进,而Linux1.0相比与现在的版本,基本功能,尚属完善,所以后续将研究Linux1.0源码,事实上阅读早期版本的源码,更有利于理解其过程。

关于进程的前面已有介绍进程基础编程进程管理(linux2.6)

Linux 1.0\kernel\fork.c

 unix 系统通过 fork 系统调用创建一个进程,fork.c 的主要任务是为新的进程填写数据结构,相关步骤有:

取得一个空闲内存页面来保存 task_struct
找到一个空闲的进程槽(find_empty_process())
为内存堆栈页 kernel_stack_page 取得另一个空闲的内存页面
将父进程的 LDT 拷贝到子进程
复制父进程的 mmap 信息给子进程
sys_fork() 同样管理文件描述符和 inode
下面看看源码是如何实现的:
/*
*  linux/kernel/fork.c
*
*  Copyright (C) 1991, 1992  Linus Torvalds
*/

/*
*  'fork.c' contains the help-routines for the 'fork' system call
* (see also system_call.s).
* Fork is rather simple, once you get the hang of it, but the memory
* management can be a bitch. See 'mm/mm.c': 'copy_page_tables()'
*/

#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
#include <linux/segment.h>
#include <linux/ptrace.h>
#include <linux/malloc.h>
#include <linux/ldt.h>

#include <asm/segment.h>
#include <asm/system.h>

asmlinkage void ret_from_sys_call(void) __asm__("ret_from_sys_call");

/* These should maybe be in <linux/tasks.h> */

#define MAX_TASKS_PER_USER (NR_TASKS/2)
#define MIN_TASKS_LEFT_FOR_ROOT 4

extern int shm_fork(struct task_struct *, struct task_struct *);
long last_pid=0;
//为新进程取得不重复的进程号,并返回在任务数组中的任务编号
//进程号即进程id,跟任务编号是两个概念
static int find_empty_process(void)
{
int free_task;
int i, tasks_free;
int this_user_tasks;

repeat:
//系统最大进程号为0x8000-1
//如果恰好这么大,则让进程号从1开始,0为init进程
if ((++last_pid) & 0xffff8000)
last_pid=1;
this_user_tasks = 0;
tasks_free = 0;
free_task = -EAGAIN;
i = NR_TASKS;
//i为系统的最大任务数
while (--i > 0) {
//如果对应i的任务号没有被占用,让free_task等于该值,同时自增可用的任务数
if (!task[i]) {
free_task = i;
tasks_free++;
continue;
}
//用户id拷贝
if (task[i]->uid == current->uid)
this_user_tasks++;
//进程id、进程组id、会话id 都等于该进程id
if (task[i]->pid == last_pid || task[i]->pgrp == last_pid ||
task[i]->session == last_pid)
goto repeat;
}
//任务数溢出
if (tasks_free <= MIN_TASKS_LEFT_FOR_ROOT ||//可用任务数少于最低需要
this_user_tasks > MAX_TASKS_PER_USER)//
if (current->uid)
return -EAGAIN;//当前进程数达到系统规定的上限,errno设置为EAGAIN
//返回找到的任务号
return free_task;
}

//拷贝父进程打开的所有文件描述符,共享一个文件表项
static struct file * copy_fd(struct file * old_file)
{
//从全局文件描述符中取个新的描述符
struct file * new_file = get_empty_filp();
int error;

if (new_file) {
//拷贝老的文件描述符到新的
memcpy(new_file,old_file,sizeof(struct file));
new_file->f_count = 1;//文件引用计数
//若新描述符占用了i节点,增加其引用计数
if (new_file->f_inode)
new_file->f_inode->i_count++;
//调用对应的open函数,并打开,子进程同样打开父进程对应的文件
if (new_file->f_op && new_file->f_op->open) {
error = new_file->f_op->open(new_file->f_inode,new_file);
//出错处理:如果失败,则释放其i节点
if (error) {
iput(new_file->f_inode);
new_file->f_count = 0;
new_file = NULL;
}
}
}
//返回新的文件描述符
return new_file;
}

//拷贝父进程的mmap信息,tsk是子进程,current是父进程
//因为linux采用了copy-on-write 技术,所以在执行exec之前
//父子进程两者的虚拟空间不同,但其映射的物理空间是同一个,存储映射是一样的
int dup_mmap(struct task_struct * tsk)
{
//虚拟地址空间
struct vm_area_struct * mpnt, **p, *tmp;

tsk->mmap = NULL;
tsk->stk_vma = NULL;
p = &tsk->mmap;//物理内存页面
//链表形式组织数据,vm_next指向下一个vm_area_struct结构
for (mpnt = current->mmap ; mpnt ; mpnt = mpnt->vm_next) {
//寻找空闲的满足要求的一段连续的虚拟地址空间,这样父子进程具备不同的虚拟地址空间
tmp = (struct vm_area_struct *) kmalloc(sizeof(struct vm_area_struct), GFP_KERNEL);
if (!tmp)
return -ENOMEM;//系统内存不足,errno设置为ENOMEM
*tmp = *mpnt;//指向了同一个mmap 物理内存
tmp->vm_task = tsk;//绑定到子进程tsk
tmp->vm_next = NULL;//子进程默认下一个vm_area_struct结构为空
//vm_inode指向虚拟地址映射的磁盘文件或设备文件的内容的inode结构体
if (tmp->vm_inode)
tmp->vm_inode->i_count++;//引用计数加1
*p = tmp;//子进程的第一个vm_area_struct的物理内存映射
p = &tmp->vm_next;//指向下一个vm_area_struct,然后循环让子进程与父进程的虚拟空间映射到同一物理页面
//指向vm_area_struct 链表的链表头
if (current->stk_vma == mpnt)
tsk->stk_vma = tmp;
}
return 0;
}

#define IS_CLONE (regs.orig_eax == __NR_clone)
#define copy_vm(p) ((clone_flags & COPYVM)?copy_page_tables(p):clone_page_tables(p))

/*
*  Ok, this is the main fork-routine. It copies the system process
* information (task[nr]) and sets up the necessary registers. It
* also copies the data segment in its entirety.
*/
/*fork的主程序,拷贝系统进程的信息(task[nr])并且设置必要的寄存器,同时完全拷贝数据段
regs为用户态进入内核态时的堆栈排布结构*/
asmlinkage int sys_fork(struct pt_regs regs)
{
struct pt_regs * childregs;
struct task_struct *p;
int i,nr;
struct file *f;
unsigned long clone_flags = COPYVM | SIGCHLD;
//获取一个空闲内存页面来保存task_struct
if(!(p = (struct task_struct*)__get_free_page(GFP_KERNEL)))
goto bad_fork;
//查找空闲的进程槽并设置全局进程号(last_pid)
nr = find_empty_process();
if (nr < 0)
goto bad_fork_free;
//复制父进程的信息到获取的内存中
task[nr] = p;
*p = *current;//复制当前进程内容,共享
p->did_exec = 0;
p->kernel_stack_page = 0;
p->state = TASK_UNINTERRUPTIBLE;//置子进程为不可中断状态
p->flags &= ~(PF_PTRACED|PF_TRACESYS);
p->pid = last_pid;//进程pid
p->swappable = 1;
//把该任务加入任务双向链表中
p->p_pptr = p->p_opptr = current;
p->p_cptr = NULL;
SET_LINKS(p);//include/linux/sched.h
p->signal = 0;//信号位
p->it_real_value = p->it_virt_value = p->it_prof_value = 0;
p->it_real_incr = p->it_virt_incr = p->it_prof_incr = 0;
p->leader = 0;		/* process leadership doesn't inherit */
p->utime = p->stime = 0;//初始化用户态时间和核心态时间
p->cutime = p->cstime = 0;//初始化子进程用户态和核心态时间
p->min_flt = p->maj_flt = 0;
p->cmin_flt = p->cmaj_flt = 0;
p->start_time = jiffies;
/*
* set up new TSS and kernel stack
*/
//为核心堆栈页kernel_stack_page取得另一个空闲的内存页面
if (!(p->kernel_stack_page = __get_free_page(GFP_KERNEL)))
goto bad_fork_cleanup;
//各类寄存器设置
p->tss.es = KERNEL_DS;
p->tss.cs = KERNEL_CS;
p->tss.ss = KERNEL_DS;
p->tss.ds = KERNEL_DS;
p->tss.fs = USER_DS;
p->tss.gs = KERNEL_DS;
p->tss.ss0 = KERNEL_DS;
p->tss.esp0 = p->kernel_stack_page + PAGE_SIZE;
//设置TSS(任务状态段)
p->tss.tr = _TSS(nr);
//childregs指向核心堆栈栈顶
childregs = ((struct pt_regs *) (p->kernel_stack_page + PAGE_SIZE)) - 1;
p->tss.esp = (unsigned long) childregs;
p->tss.eip = (unsigned long) ret_from_sys_call;
//传入的堆栈寄存器内容复制到childregs中(子进程寄存器)
*childregs = regs;
//新进程返回0的原因
childregs->eax = 0;
p->tss.back_link = 0;
p->tss.eflags = regs.eflags & 0xffffcfff;	/* iopl is always 0 for a new process */
//如果当前进程是调用sys_clone系统调用的话
if (IS_CLONE) {
if (regs.ebx)
childregs->esp = regs.ebx;
clone_flags = regs.ecx;
if (childregs->esp == regs.esp)
clone_flags |= COPYVM;
}
p->exit_signal = clone_flags & CSIGNAL;
//局部描述符传传入任务状态段的idt
p->tss.ldt = _LDT(nr);
if (p->ldt) {//当前任务的ldt不为空
//让其指向新分配的内存
p->ldt = (struct desc_struct*) vmalloc(LDT_ENTRIES*LDT_ENTRY_SIZE);
if (p->ldt != NULL)
//如果分配成功,则拷贝当前进程的ldt
memcpy(p->ldt, current->ldt, LDT_ENTRIES*LDT_ENTRY_SIZE);
}
//计算io_bitmap在tss_struct中的偏移量
p->tss.bitmap = offsetof(struct tss_struct,io_bitmap);
//置位
for (i = 0; i < IO_BITMAP_SIZE+1 ; i++) /* IO bitmap is actually SIZE+1 */
p->tss.io_bitmap[i] = ~0;
//如果当前进程使用了协处理器,就保存其上下文
if (last_task_used_math == current)
__asm__("clts ; fnsave %0 ; frstor %0":"=m" (p->tss.i387));
p->semun = NULL; p->shm = NULL;
if (copy_vm(p) || shm_fork(current, p))
goto bad_fork_cleanup;
//如果是克隆的
if (clone_flags & COPYFD) {
//且当前有文件是打开的,就把该文件描述符拷贝到新创建的进程中
for (i=0; i<NR_OPEN;i++)
if ((f = p->filp[i]) != NULL)
p->filp[i] = copy_fd(f);
} else {
//否则,将对应文件的打开次数加1
for (i=0; i<NR_OPEN;i++)
if ((f = p->filp[i]) != NULL)
f->f_count++;
}
//下面是引用计数加1
if (current->pwd)
current->pwd->i_count++;
if (current->root)
current->root->i_count++;
if (current->executable)
current->executable->i_count++;
//复制父进程的 mmap 信息,即物理内存页面信息
dup_mmap(p);
//在gdt中设置新任务的tss
set_tss_desc(gdt+(nr<<1)+FIRST_TSS_ENTRY,&(p->tss));
//如果已经设置了当前任务的ldt,则在gdt设置该ldt
if (p->ldt)
set_ldt_desc(gdt+(nr<<1)+FIRST_LDT_ENTRY,p->ldt, 512);
else
//否则,采用默认ldt
set_ldt_desc(gdt+(nr<<1)+FIRST_LDT_ENTRY,&default_ldt, 1);
//
p->counter = current->counter >> 1;
//进程状态设置为可运行态
p->state = TASK_RUNNING;	/* do this last, just in case */
return p->pid;//父进程返回:返回子进程id
//下面为异常出错处理
bad_fork_cleanup:
task[nr] = NULL;
REMOVE_LINKS(p);
free_page(p->kernel_stack_page);
bad_fork_free:
free_page((long) p);
bad_fork:
return -EAGAIN;
}

分析源码最好借助 Source Insight 这个非常好的工具,不清楚变量的属性,点一下,下面就会弹出该变量对应的属性(什么类型)

从上面分析得出,一个进程,包括代码、数据和分配给进程的资源,fork 函数通过系统调用,上面的函数就是系统调用部分,系统先给新的进程分配进程存在需要的空间资源,然后把父进程的几乎所有信息复制给子进程,比如,父进程打开的所有文件描述符,存储映射等等,只有少数值与父进程的值不同。
子进程具备了它是一个进程的资格,且被设置为可运行态,所以在用户调用 fork 之后,创建的子进程即可运行。
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息