您的位置:首页 > 理论基础 > 计算机网络

Android应用开发:网络工具——Volley(二)

2015-05-31 19:25 507 查看
[-]

引言
源头RequestQueue
CacheDispatcher缓存操作
NetworkDispatcher网络处理
ExecutorDelivery消息分发者与Request请求
总结

引言

Android应用开发:网络工具——Volley(一)中结合Cloudant服务介绍了Volley的一般用法,其中包含了两种请求类型StringRequest和JsonObjectRequest。一般的请求任务相信都可以通过他们完成了,不过在千变万化的网络编程中,我们还是希望能够对请求类型、过程等步骤进行完全的把控,本文就从Volley源码角度来分析一下,一个网络请求在Volley中是如何运作的,也可以看作网络请求在Volley中的生命周期。

源头RequestQueue

在使用Volley前,必须有一个网络请求队列来承载请求,所以先分析一下这个请求队列是如何申请,如果运作的。在Volley.java中:

/**

* Creates a default instance of the worker pool and calls {@link RequestQueue#start()} on it.

*

* @param context A {@link Context} to use for creating the cache dir.

* @param stack An {@link HttpStack} to use for the network, or null for default.

* @return A started {@link RequestQueue} instance.

*/

public static RequestQueue newRequestQueue(Context context, HttpStack stack) {

File cacheDir = new File(context.getCacheDir(), DEFAULT_CACHE_DIR);



String userAgent = "volley/0";

try {

String packageName = context.getPackageName();

PackageInfo info = context.getPackageManager().getPackageInfo(packageName, 0);

userAgent = packageName + "/" + info.versionCode;

} catch (NameNotFoundException e) {

}



if (stack == null) {

if (Build.VERSION.SDK_INT >= 9) {

stack = new HurlStack();

} else {

// Prior to Gingerbread, HttpUrlConnection was unreliable.

// See: http://android-developers.blogspot.com/2011/09/androids-http-clients.html

stack = new HttpClientStack(AndroidHttpClient.newInstance(userAgent));

}

}



Network network = new BasicNetwork(stack);



RequestQueue queue = new RequestQueue(new DiskBasedCache(cacheDir), network);

queue.start();



return queue;

}



/**

* Creates a default instance of the worker pool and calls {@link RequestQueue#start()} on it.

*

* @param context A {@link Context} to use for creating the cache dir.

* @return A started {@link RequestQueue} instance.

*/

public static RequestQueue newRequestQueue(Context context) {

return newRequestQueue(context, null);

}

通常使用的是第二个接口,也就是只有一个参数的newRequestQueue(Context context),使stack默认为null。可以看到我们得到的RequestQueue是通过RequestQueue申请,然后又调用了其start方法,最后返回给我们的。接下来看一下RequestQueue的构造方法:

/**

* Creates the worker pool. Processing will not begin until {@link #start()} is called.

*

* @param cache A Cache to use for persisting responses to disk

* @param network A Network interface for performing HTTP requests

* @param threadPoolSize Number of network dispatcher threads to create

* @param delivery A ResponseDelivery interface for posting responses and errors

*/

public RequestQueue(Cache cache, Network network, int threadPoolSize,

ResponseDelivery delivery) {

mCache = cache;

mNetwork = network;

mDispatchers = new NetworkDispatcher[threadPoolSize];

mDelivery = delivery;

}



/**

* Creates the worker pool. Processing will not begin until {@link #start()} is called.

*

* @param cache A Cache to use for persisting responses to disk

* @param network A Network interface for performing HTTP requests

* @param threadPoolSize Number of network dispatcher threads to create

*/

public RequestQueue(Cache cache, Network network, int threadPoolSize) {

this(cache, network, threadPoolSize,

new ExecutorDelivery(new Handler(Looper.getMainLooper())));

}



/**

* Creates the worker pool. Processing will not begin until {@link #start()} is called.

*

* @param cache A Cache to use for persisting responses to disk

* @param network A Network interface for performing HTTP requests

*/

public RequestQueue(Cache cache, Network network) {

this(cache, network, DEFAULT_NETWORK_THREAD_POOL_SIZE);

}

RequestQueue有三种构造方法,通过newRequestQueue(Context context)调用的是最后一种。创建了一个工作池,默认承载网络线程数量为4个。而后两种构造方法都会调用到第一个,进行了一些局部变量的赋值,并没有什么需要多说的,接下来看start()方法:

public void start() {

stop(); // Make sure any currently running dispatchers are stopped.

// Create the cache dispatcher and start it.

mCacheDispatcher = new CacheDispatcher(mCacheQueue, mNetworkQueue, mCache, mDelivery);

mCacheDispatcher.start();



// Create network dispatchers (and corresponding threads) up to the pool size.

for (int i = 0; i < mDispatchers.length; i++) {

NetworkDispatcher networkDispatcher = new NetworkDispatcher(mNetworkQueue, mNetwork,

mCache, mDelivery);

mDispatchers[i] = networkDispatcher;

networkDispatcher.start();

}

}

首先进行了stop操作,将所有的执行者全部退出,从而确保当前没有任何正在工作的执行者。然后主要的工作就是开启一个CacheDispatcher和符合线程池数量的NetworkDispatcher。首先分析CacheDispatcher。

CacheDispatcher缓存操作

CacheDispatcher为缓存队列处理器,创建伊始就被责令开始工作start(),因为CacheDispatcher继承于Thread类,所以需要看一下它所复写的run方法:

@Override

public void run() {

if (DEBUG) VolleyLog.v("start new dispatcher");

Process.setThreadPriority(Process.THREAD_PRIORITY_BACKGROUND);



// Make a blocking call to initialize the cache.

mCache.initialize(); //初始化一个缓存



while (true) {

try {

// Get a request from the cache triage queue, blocking until

// at least one is available.

final Request<?> request = mCacheQueue.take(); //在缓存序列中获取请求,阻塞操作

request.addMarker("cache-queue-take");



// If the request has been canceled, don't bother dispatching it.

if (request.isCanceled()) { //若该请求已经被取消了,则直接跳过

request.finish("cache-discard-canceled");

continue;

}



// Attempt to retrieve this item from cache.

Cache.Entry entry = mCache.get(request.getCacheKey()); //尝试在缓存中查找是否有缓存数据

if (entry == null) {

request.addMarker("cache-miss"); //若没有则缓存丢失,证明这个请求并没有获得实施过,扔进网络请求队列中

// Cache miss; send off to the network dispatcher.

mNetworkQueue.put(request);

continue;

}



// If it is completely expired, just send it to the network.

if (entry.isExpired()) { //若请求已经过期,那么就要去获取最新的消息,所以依然丢进网络请求队列中

request.addMarker("cache-hit-expired");

request.setCacheEntry(entry);

mNetworkQueue.put(request);

continue;

}



// We have a cache hit; parse its data for delivery back to the request.

request.addMarker("cache-hit");

Response<?> response = request.parseNetworkResponse(

new NetworkResponse(entry.data, entry.responseHeaders)); //请求有缓存数据且没有过期,那么可以进行解析,交给请求的parseNetworkReponse方法进行解析,这个方法我们可以在自定义个Request中进行复写自定义

request.addMarker("cache-hit-parsed");



if (!entry.refreshNeeded()) { //如果请求有效且并不需要刷新,则丢进Delivery中处理,最终会触发如StringRequest这样的请求子类的onResponse或onErrorResponse

// Completely unexpired cache hit. Just deliver the response.

mDelivery.postResponse(request, response);

} else { //请求有效,但是需要进行刷新,那么需要丢进网络请求队列中

// Soft-expired cache hit. We can deliver the cached response,

// but we need to also send the request to the network for

// refreshing.

request.addMarker("cache-hit-refresh-needed");

request.setCacheEntry(entry);



// Mark the response as intermediate.

response.intermediate = true;



// Post the intermediate response back to the user and have

// the delivery then forward the request along to the network.

mDelivery.postResponse(request, response, new Runnable() {

@Override

public void run() {

try {

mNetworkQueue.put(request);

} catch (InterruptedException e) {

// Not much we can do about this.

}

}

});

}



} catch (InterruptedException e) {

// We may have been interrupted because it was time to quit.

if (mQuit) {

return;

}

continue;

}

}

}

CacheDispatcher做了很多事情,之后再来慢慢的消化他们。现在先看一下我们的请求通过add之后到了哪里去。查看RequestQueue.java的add方法:

/**

* Adds a Request to the dispatch queue.

* @param request The request to service

* @return The passed-in request

*/

public <T> Request<T> add(Request<T> request) {

// Tag the request as belonging to this queue and add it to the set of current requests.

request.setRequestQueue(this);

synchronized (mCurrentRequests) {

mCurrentRequests.add(request); //加入到当前的队列中,是一个HashSet

}



// Process requests in the order they are added.

request.setSequence(getSequenceNumber());

request.addMarker("add-to-queue");



// If the request is uncacheable, skip the cache queue and go straight to the network.若这个请求不需要被缓存,需要直接做网络请求,那么就直接加到网络请求队列中

if (!request.shouldCache()) {

mNetworkQueue.add(request);

return request;

}



// Insert request into stage if there's already a request with the same cache key in flight.

synchronized (mWaitingRequests) {

String cacheKey = request.getCacheKey(); // Volley中使用请求的URL作为存储的key

if (mWaitingRequests.containsKey(cacheKey)) { //若等待的请求中有与所请求的URL相同的请求,则需要做层级处理

// There is already a request in flight. Queue up.

Queue<Request<?>> stagedRequests = mWaitingRequests.get(cacheKey);

if (stagedRequests == null) {

stagedRequests = new LinkedList<Request<?>>();

}

stagedRequests.add(request);

mWaitingRequests.put(cacheKey, stagedRequests); //若与已有的请求URL相同,则创建一个层级列表保存他们,然后再放入等待请求列表中

if (VolleyLog.DEBUG) {

VolleyLog.v("Request for cacheKey=%s is in flight, putting on hold.", cacheKey);

}

} else {

// Insert 'null' queue for this cacheKey, indicating there is now a request in

// flight.

mWaitingRequests.put(cacheKey, null); //若是一个全新的请求,则直接放入等待队列中,注意数据为null,只有多个url产生层级关系了才有数据

mCacheQueue.add(request); //放入缓存队列中,缓存队列会对请求做处理

}

return request;

}

}

这里的mCacheQueue就是放入CacheDispatcher的那个阻塞队列,所以在add中添加到mCacheQueue后,因为CacheDispatcher已经运行起来了,所以CacheDispatcher会对刚刚加入的网络请求做处理。分析到这里,可以进行一下阶段性的梳理:

1. 我们的请求在加入到RequestQueue后,首先会加入到其实体类的mCurrentRequests列表中做本地管理

2. 如果之前已经存在了和本次请求相同URL的请求,那么会将层级关系保存在mWaitingRequests中,若没有则层级关系为null,同样也会保存在mWaitingRequests中

3. 对于没有层级关系(新的URL)的网络请求会直接放入mCacheQueue中让CacheDispatcher对其进行处理

分析到这里发现对于同一个URL的请求处理比较特殊,当第一次做某个网络请求A时候,A会直接放入缓存队列中由CacheDispatcher进行处理。下一次进行同一个URL的请求B时,若此时A还存在于mWaitingRequests队列中则B的请求被雪藏,不放入mCacheQueue缓存队列进行处理,只是等待。那么等待到什么时候呢?不难猜想到是需要等待A的请求完毕后才可以进行B的请求。归结到底就是需要知道mWaitingRequest是如何运作的?什么时候存储在其中的层级结构才会被拿出来进行请求。暂时记下这个问题,现在回头再去继续分析CacheDispatcher。CacheDispatcher对请求的处理可以归结为以下几种情况:

1. 对于取消的请求,直接表示为完成并跳过;

2. 对于尚未有应答数据的、数据过期、有明显标示需要刷新的请求直接丢入mNetworkQueue,mNetworkQueue同mCacheQueue一样,是一个阻塞队列;

3. 对于有应答数据且数据尚未过期的请求会出发Request的parseNetworkResponse方法进行数据解析,这个方法可以通过继承Request类进行复写(定制);

4. 对于有效应答(无论是否需要更新)都会用mDelivery进行应答,需要刷新的请求则会再次放入到mNetworkQueue中去。

对于(1)暂不做分析,后边会遇到。下边分析一下mNetworkQueue的运作原理,mNetworkQueue是在CacheDispatcher构造时传入的参数,通过RequestQueue的start()方法不难分析出相对应的处理器为NetworkDispatcher。

NetworkDispatcher网络处理

在RequestQueue的start()方法中,NetworkDispatcher存在多个,其数量等于RequestQueue构造时候传入的网络处理线程数量相等,默认为4个。

public void start() {

stop(); // Make sure any currently running dispatchers are stopped.

// Create the cache dispatcher and start it.

mCacheDispatcher = new CacheDispatcher(mCacheQueue, mNetworkQueue, mCache, mDelivery);

mCacheDispatcher.start();



// Create network dispatchers (and corresponding threads) up to the pool size.

for (int i = 0; i < mDispatchers.length; i++) {

NetworkDispatcher networkDispatcher = new NetworkDispatcher(mNetworkQueue, mNetwork,

mCache, mDelivery);

mDispatchers[i] = networkDispatcher;

networkDispatcher.start();

}

}

每一个dispatcher被创造后都及时进行了start()操作,而NetworkDispatcher也是继承于Thread的类,那么之后需要分析其复写的run方法,在这之前先看一下它的构造方法:

public NetworkDispatcher(BlockingQueue<Request<?>> queue,

Network network, Cache cache,

ResponseDelivery delivery) {

mQueue = queue;

mNetwork = network;

mCache = cache;

mDelivery = delivery;

}

mQueue即为mNetworkQueue,这与CacheDispatcher中使用到的是同一个。而mNetwork默认是BasicNetwork,mCache为缓存,mDelivery为最终的消息配发者,之后会分析到。接下来看其复写的run()方法:

@Override

public void run() {

Process.setThreadPriority(Process.THREAD_PRIORITY_BACKGROUND); //设置线程可后台运行,不会因为系统休眠而挂起

Request<?> request;

while (true) {

try {

// Take a request from the queue.

request = mQueue.take(); //mQueue即为mNetworkQueue,从mNetworkQueue中获取请求,也就是说CacheDispatcher丢过来的请求是从这里被NetworkDispatcher获取到的。注意这里获取请求是阻塞的。

} catch (InterruptedException e) { //退出操作,NetworkDispatcher被设置成退出时候发出中断请求

// We may have been interrupted because it was time to quit.

if (mQuit) {

return;

}

continue;

}



try {

request.addMarker("network-queue-take");



// If the request was cancelled already, do not perform the

// network request.

if (request.isCanceled()) { //若请求已经被取消,则标记为完成(被取消),然后继续下一个请求

request.finish("network-discard-cancelled");

continue;

}



addTrafficStatsTag(request);



// Perform the network request.

NetworkResponse networkResponse = mNetwork.performRequest(request); //使用BasicNetwork处理请求

request.addMarker("network-http-complete");



// If the server returned 304 AND we delivered a response already,

// we're done -- don't deliver a second identical response.

if (networkResponse.notModified && request.hasHadResponseDelivered()) {

request.finish("not-modified");

continue;

}



// Parse the response here on the worker thread.

Response<?> response = request.parseNetworkResponse(networkResponse); //处理网络请求应答数据

request.addMarker("network-parse-complete");



// Write to cache if applicable.

// TODO: Only update cache metadata instead of entire record for 304s.

if (request.shouldCache() && response.cacheEntry != null) {

mCache.put(request.getCacheKey(), response.cacheEntry);

request.addMarker("network-cache-written");

}



// Post the response back.

request.markDelivered(); //标记请求为已应答并做消息分发处理

mDelivery.postResponse(request, response);

} catch (VolleyError volleyError) {

parseAndDeliverNetworkError(request, volleyError); //若产生Volley错误则会触发Request的parseNetworkError方法以及mDelivery的postError方法

} catch (Exception e) {

VolleyLog.e(e, "Unhandled exception %s", e.toString());

mDelivery.postError(request, new VolleyError(e)); //对于未知错误,只会触发mDelivery的postError方法。

}

}

}

mNetwork.performRequest是真正的网络请求实施的地方,这里对BasicNetwork不做分析。网络请求的回应是NetworkResponse类型,看一下这个类型是怎么样的:

/**

* Data and headers returned from {@link Network#performRequest(Request)}.

*/

public class NetworkResponse {

/**

* Creates a new network response.

* @param statusCode the HTTP status code

* @param data Response body

* @param headers Headers returned with this response, or null for none

* @param notModified True if the server returned a 304 and the data was already in cache

*/

public NetworkResponse(int statusCode, byte[] data, Map<String, String> headers,

boolean notModified) {

this.statusCode = statusCode;

this.data = data;

this.headers = headers;

this.notModified = notModified;

}



public NetworkResponse(byte[] data) {

this(HttpStatus.SC_OK, data, Collections.<String, String>emptyMap(), false);

}



public NetworkResponse(byte[] data, Map<String, String> headers) {

this(HttpStatus.SC_OK, data, headers, false);

}



/** The HTTP status code. */

public final int statusCode;



/** Raw data from this response. */

public final byte[] data;



/** Response headers. */

public final Map<String, String> headers;



/** True if the server returned a 304 (Not Modified). */

public final boolean notModified;

}

NetworkResponse保存了请求的回应数据,包括数据本身和头,还有状态码以及其他相关信息。根据请求类型的不同,对回应数据的处理方式也各有不同,例如回应是String和Json的区别。所以自然而然的网络请求类型需要对它获得的回应数据自行处理,也就触发了Request子类的parseNetworkResponse方法,下边以StringRequest为例进行分析:

@Override

protected Response<String> parseNetworkResponse(NetworkResponse response) {

String parsed;

try {

parsed = new String(response.data, HttpHeaderParser.parseCharset(response.headers));

} catch (UnsupportedEncodingException e) {

parsed = new String(response.data);

}

return Response.success(parsed, HttpHeaderParser.parseCacheHeaders(response));

}

StringRequest中对于回应首先尝试解析数据和辨别头数据编码类型,若失败则只解析数据部分。最终都是触发Request的success方法,参数中还使用Volley自带的HttpHeaderParser对头信息进行了解析。需要看一下Response的success方法究竟做了什么,鉴于Response类总共没有多少代码,就全部拿出来做分析了:

public class Response<T> {



/** 处理解析过的回应信息的回调接口 */

public interface Listener<T> {

/** 当接收到回应后 */

public void onResponse(T response);

}



/** 处理错误回应的回调接口 */

public interface ErrorListener {

/**

* 错误发生时的回调接口

*/

public void onErrorResponse(VolleyError error);

}



/** 返回一个包含已解析结果的成功回应 */

public static <T> Response<T> success(T result, Cache.Entry cacheEntry) {

return new Response<T>(result, cacheEntry);

}



/**

* 返回错误回应,包含错误码以及可能的其他消息

*/

public static <T> Response<T> error(VolleyError error) {

return new Response<T>(error);

}



/** 解析过的响应信息,错误时为null */

public final T result;



/** 响应的缓存数据,错误时为null */

public final Cache.Entry cacheEntry;



/** 详细的错误信息 */

public final VolleyError error;



/** 此回应软件希望得到第二次回应则为true,即需要刷新 */

public boolean intermediate = false;



/**

* 返回true代表回应成功,没有错误。有错误则为false

*/

public boolean isSuccess() {

return error == null;

}





private Response(T result, Cache.Entry cacheEntry) {

this.result = result;

this.cacheEntry = cacheEntry;

this.error = null;

}



private Response(VolleyError error) {

this.result = null;

this.cacheEntry = null;

this.error = error;

}

}

这就是网络响应的类,很简单,成功或错误都会直接进行标记,通过isSuccess接口提供外部查询。如果响应成功,则消息保存在result中,解析头信息得到的缓存数据保存在cacheEntry中。

Request作为基类,Volley自带的又代表性的其扩展类又StringRequest和JsonObjectRequest,如果开发者有比较大的自定义需求就需要继承Request复写内部一些重要的方法。同时mDelivery出场的机会这么多,为什么他总出现在处理请求的地方呢?下边就对它和Request一起进行分析,其中Request依然以StringRequest为例。

ExecutorDelivery消息分发者与Request请求

mDelivery类型为ResponseDelivery,实为接口类型:

public interface ResponseDelivery {

/**

* Parses a response from the network or cache and delivers it.

*/

public void postResponse(Request<?> request, Response<?> response);



/**

* Parses a response from the network or cache and delivers it. The provided

* Runnable will be executed after delivery.

*/

public void postResponse(Request<?> request, Response<?> response, Runnable runnable);



/**

* Posts an error for the given request.

*/

public void postError(Request<?> request, VolleyError error);

}

三个接口其中两个是回应网络应答的,最后一个回应网络错误。追溯RequestQueue构造的时候,默认的分发者为ExecutorDelivery:

public RequestQueue(Cache cache, Network network, int threadPoolSize) {

this(cache, network, threadPoolSize,

new ExecutorDelivery(new Handler(Looper.getMainLooper())));

}

可见,消息分发者工作在主线程上。常见的分发者所做的工作有:

@Override

public void postResponse(Request<?> request, Response<?> response) { //发出响应

postResponse(request, response, null);

}



@Override

public void postResponse(Request<?> request, Response<?> response, Runnable runnable) { //发出响应

request.markDelivered();

request.addMarker("post-response");

mResponsePoster.execute(new ResponseDeliveryRunnable(request, response, runnable));

}



@Override

public void postError(Request<?> request, VolleyError error) { //发出错误响应

request.addMarker("post-error");

Response<?> response = Response.error(error);

mResponsePoster.execute(new ResponseDeliveryRunnable(request, response, null));

}

这里发现一个问题,其实在NetworkDispatcher中的request.markDelivered()是多余的,在postResponse中已经执行了。无论是正常的响应还是错误都会执行ResponseDeliveryRunnable:

private class ResponseDeliveryRunnable implements Runnable {

private final Request mRequest;

private final Response mResponse;

private final Runnable mRunnable;



public ResponseDeliveryRunnable(Request request, Response response, Runnable runnable) {

mRequest = request;

mResponse = response;

mRunnable = runnable; //若指定了runnable,如上面分析的在网络请求有效但是需要更新的时候会指定一个runnable的

}



@SuppressWarnings("unchecked")

@Override

public void run() {

// If this request has canceled, finish it and don't deliver.

if (mRequest.isCanceled()) { //若请求被取消,结束并做标记

mRequest.finish("canceled-at-delivery");

return;

}



// Deliver a normal response or error, depending.

if (mResponse.isSuccess()) { //若请求成功则处理回应

mRequest.deliverResponse(mResponse.result);

} else { //若不成功则处理错误

mRequest.deliverError(mResponse.error);

}



// If this is an intermediate response, add a marker, otherwise we're done

// and the request can be finished.

if (mResponse.intermediate) {

mRequest.addMarker("intermediate-response");

} else {

mRequest.finish("done");

}



// If we have been provided a post-delivery runnable, run it.

if (mRunnable != null) { //如果指定了额外的runnable这里还会对它进行执行

mRunnable.run();

}

}

}

Delivery作为网络回应的分发、处理者,对回应数据进行了最后一层的把关。而当Delivery查询回应是否成功时,因为Request已经对回应信息做过处理(检查其成功还是错误),所以可以查询到正确的状态。若查询到回应成功则会触发Request的deliverResponse方法(以StringRequest为例):

@Override

protected void deliverResponse(String response) {

mListener.onResponse(response);

}

其实就是触发了用户自定义的网络响应监听器,mListener在StringRequest的构造中进行赋值:

public StringRequest(int method, String url, Listener<String> listener,

ErrorListener errorListener) {

super(method, url, errorListener);

mListener = listener;

}



public StringRequest(String url, Listener<String> listener, ErrorListener errorListener) {

this(Method.GET, url, listener, errorListener);

}

当查询到网络回应数据不成功时候将触发Request的deliverError方法,这个方法StringRequest并没有复写,所以追溯到其父类Request中:

public void deliverError(VolleyError error) {

if (mErrorListener != null) {

mErrorListener.onErrorResponse(error);

}

}

这里mErrorListener也是用户在使用Volley时候自定的错误监听器,在StringRequest中并没有处理,是通过super执行Request的构造方法进行赋值的:

public Request(int method, String url, Response.ErrorListener listener) {

mMethod = method;

mUrl = url;

mErrorListener = listener;

setRetryPolicy(new DefaultRetryPolicy());



mDefaultTrafficStatsTag = findDefaultTrafficStatsTag(url);

}

当这个请求已经完整的确定完成后,Delivery会通知Request进行结束操作——finish:

void finish(final String tag) {

if (mRequestQueue != null) { //若请求队列有效,则在请求队列中标记当前请求为结束

mRequestQueue.finish(this);

} //之后都是日志相关,不做分析

if (MarkerLog.ENABLED) {

final long threadId = Thread.currentThread().getId();

if (Looper.myLooper() != Looper.getMainLooper()) {

// If we finish marking off of the main thread, we need to

// actually do it on the main thread to ensure correct ordering.

Handler mainThread = new Handler(Looper.getMainLooper());

mainThread.post(new Runnable() {

@Override

public void run() {

mEventLog.add(tag, threadId);

mEventLog.finish(this.toString());

}

});

return;

}



mEventLog.add(tag, threadId);

mEventLog.finish(this.toString());

} else {

long requestTime = SystemClock.elapsedRealtime() - mRequestBirthTime;

if (requestTime >= SLOW_REQUEST_THRESHOLD_MS) {

VolleyLog.d("%d ms: %s", requestTime, this.toString());

}

}

}

mRequestQueue为RequestQueue类型,在开篇中就分析了RequestQueue,相关的还有一个问题当时没有进行挖掘,即mWaitingQueue中保留的相同URL的多个请求层级何时才能够被触发,下边分析mRequestQueue的finish方法就能解开这个疑问了:

void finish(Request<?> request) {

// Remove from the set of requests currently being processed.

synchronized (mCurrentRequests) {

mCurrentRequests.remove(request); //当请求已完成,会从mCurrentRequests队列中被移除掉

}



if (request.shouldCache()) { //默认是true的,除非你调用Request的setShouldCache方法主动设定

synchronized (mWaitingRequests) {

String cacheKey = request.getCacheKey(); //获取cacheKey,前边说过就是URL

Queue<Request<?>> waitingRequests = mWaitingRequests.remove(cacheKey); //移除列表中的这个请求,同时取出其可能存在的层级关系

if (waitingRequests != null) {

if (VolleyLog.DEBUG) {

VolleyLog.v("Releasing %d waiting requests for cacheKey=%s.",

waitingRequests.size(), cacheKey);

}

// Process all queued up requests. They won't be considered as in flight, but

// that's not a problem as the cache has been primed by 'request'.

mCacheQueue.addAll(waitingRequests); //若真的有层级关系,那么将其他的请求全部加入到mCacheQueue中交由CacheDispatcher处理

}

}

}

}

好了,最终待定的问题也解决了,这就是一个Request网络请求在Volley中的来龙去脉。

总结

1. 当一个RequestQueue被成功申请后会开启一个CacheDispatcher(缓存调度器)和4个(默认)NetworkDispatcher(网络请求调度器);

2. CacheDispatcher缓存调度器最为第一层缓冲,开始工作后阻塞的从缓存序列mCacheQueue中取得请求:

a. 对于已经取消了的请求,直接标记为跳过并结束这个请求

b. 全新或过期的请求,直接丢入mNetworkQueue中交由N个NetworkDispatcher进行处理

c. 已获得缓存信息(网络应答)却没有过期的请求,交由Request的parseNetworkResponse进行解析,从而确定此应答是否成功。然后将请求和应答交由Delivery分发者进行处理,如果需要更新缓存那么该请求还会被放入mNetworkQueue中

3. 用户将请求Request add到RequestQueue之后:

a. 对于不需要缓存的请求(需要额外设置,默认是需要缓存)直接丢入mNetworkQueue交由N个NetworkDispatcher处理;

b. 对于需要缓存的,全新的请求加入到mCacheQueue中给CacheDispatcher处理

c. 需要缓存,但是缓存列表中已经存在了相同URL的请求,放在mWaitingQueue中做暂时雪藏,待之前的请求完毕后,再重新添加到mCacheQueue中;

4. 网络请求调度器NetworkDispatcher作为网络请求真实发生的地方,对消息交给BasicNetwork进行处理,同样的,请求和结果都交由Delivery分发者进行处理;

5. Delivery分发者实际上已经是对网络请求处理的最后一层了,在Delivery对请求处理之前,Request已经对网络应答进行过解析,此时应答成功与否已经设定。而后Delivery根据请求所获得的应答情况做不同处理:

a. 若应答成功,则触发deliverResponse方法,最终会触发开发者为Request设定的Listener

b. 若应答失败,则触发deliverError方法,最终会触发开发者为Request设定的ErrorListener

处理完后,一个Request的生命周期就结束了,Delivery会调用Request的finish操作,将其从mRequestQueue中移除,与此同时,如果等待列表中存在相同URL的请求,则会将剩余的层级请求全部丢入mCacheQueue交由CacheDispatcher进行处理。

一个Request的生命周期:

1. 通过add加入mRequestQueue中,等待请求被执行;

2. 请求执行后,调用自身的parseNetworkResponse对网络应答进行处理,并判断这个应答是否成功;

3. 若成功,则最终会触发自身被开发者设定的Listener;若失败,最终会触发自身被开发者设定的ErrorListener。

至此Volley中网络请求的来龙去脉分析清楚了,如果我们因为一些原因需要继承Request来自定义自己的Request,最需要注意的就是parseNetworkResponse方法的复写,此方法对请求之后的命运有决定性的作用。
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: