您的位置:首页 > 运维架构 > Linux

通过fork函数创建进程的跟踪,分析linux内核进程的创建

2015-05-27 18:14 826 查看
作者:吴乐 山东师范大学

《Linux内核分析》MOOC课程http://mooc.study.163.com/course/USTC-1000029000

一、实验过程

1.打开gdb,设置断点



2.跟踪到do_fork处



3.跟踪到copy_process断点处。



4.跟踪到ret_from_fork子进程创建完成。



二、代码部分分析

Fork的系统调用代码在linux/arch/i386/kernel/process.c中:

asmlinkage int sys_fork(struct pt_regs regs)
{
return do_fork(SIGCHLD, regs.esp, ®s, 0, NULL, NULL);
}
Sys_fork系统调用通过 do_fork()函数实现,通过对do_fork()函数传递不同的clone_flags来实现fork,clone,vfork。

Syn_clone和syn_vfork的系统调用代码如下:

asmlinkage int sys_clone(struct pt_regs regs)
{
unsigned long clone_flags;
unsigned long newsp;
int __user *parent_tidptr, *child_tidptr;
clone_flags = regs.ebx;
newsp = regs.ecx;
parent_tidptr = (int __user *)regs.edx;
child_tidptr = (int __user *)regs.edi;
if (!newsp)
newsp = regs.esp;
return do_fork(clone_flags, newsp, ®s, 0, parent_tidptr, child_tidptr);
}
asmlinkage int sys_vfork(struct pt_regs regs)
{
return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs.esp, ®s, 0, NULL, NULL);
}
其中clone_flas在includelinuxsched.h中定义

/*
* cloning flags:
*/
#define CSIGNAL 0x000000ff /* 进程退出时需要传递的信号*/
#define CLONE_VM 0x00000100 /* 父子进程共享地址空间 */
#define CLONE_FS 0x00000200 /* 父子进程共享文件系统信息 */
#define CLONE_FILES 0x00000400 /* 父子进程共享已打开的文件 */
#define CLONE_SIGHAND 0x00000800 /* 父子进程共享信号处理 */
#define CLONE_PTRACE 0x00002000 /* 继续调试子进程 */
#define CLONE_VFORK 0x00004000 /* 调用vfork(),父进程休眠*/
#define CLONE_PARENT 0x00008000 /* 设置一个共有的父进程 */
#define CLONE_THREAD 0x00010000 /* 父子进程在同一个线程组 */
#define CLONE_NEWNS 0x00020000 /* 为子进程创建一个新的命名空间 */
#define CLONE_SYSVSEM 0x00040000 /* 父子进程共享system V SEM_UNDO */
#define CLONE_SETTLS 0x00080000 /* 为子进程创建新的TLS */
#define CLONE_PARENT_SETTID 0x00100000 /* 设置父进程TID */
#define CLONE_CHILD_CLEARTID 0x00200000 /* 清除子进程TID */
#define CLONE_DETACHED 0x00400000 /* Unused, ignored */
#define CLONE_UNTRACED 0x00800000 /* 不允许调试子进程 */
#define CLONE_CHILD_SETTID 0x01000000 /* 设置子进程TID */
#define CLONE_STOPPED 0x02000000 /* 设置进程停止状态 */
#define CLONE_NEWUTS 0x04000000 /* 创建新的utsname组 */
#define CLONE_NEWIPC 0x08000000 /* 创建新的IPC */
Do_fork()在kernel/fork.c中定义,代码如下:

/*
* Ok, this is the main fork-routine.
*
* It copies the process, and if successful kick-starts
* it and waits for it to finish using the VM if required.
*/
long do_fork(unsigned long clone_flags,
unsigned long stack_start,
struct pt_regs *regs,
unsigned long stack_size,
int __user *parent_tidptr,
int __user *child_tidptr)
{
struct task_struct *p;
int trace = 0;
struct pid *pid = alloc_pid();
long nr;
if (!pid)
return -EAGAIN;
nr = pid->nr;
if (unlikely(current->ptrace)) {
trace = fork_traceflag (clone_flags);
if (trace)
clone_flags |= CLONE_PTRACE;
}
p = copy_process(clone_flags, stack_start, regs, stack_size, parent_tidptr, child_tidptr, pid);
/*
* Do this prior waking up the new thread - the thread pointer
* might get invalid after that point, if the thread exits quickly.
*/
if (!IS_ERR(p)) {
struct completion vfork;
if (clone_flags & CLONE_VFORK) {
p->vfork_done = &vfork;
init_completion(&vfork);
}
if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
/*
* We'll start up with an immediate SIGSTOP.
*/
sigaddset(&p->pending.signal, SIGSTOP);
set_tsk_thread_flag(p, TIF_SIGPENDING);
}
if (!(clone_flags & CLONE_STOPPED))
wake_up_new_task(p, clone_flags);
else
p->state = TASK_STOPPED;
if (unlikely (trace)) {
current->ptrace_message = nr;
ptrace_notify ((trace << 8) | SIGTRAP);
}
if (clone_flags & CLONE_VFORK) {
freezer_do_not_count();
wait_for_completion(&vfork);
freezer_count();
if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE)) {
current->ptrace_message = nr;
ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
}
}
} else {
free_pid(pid);
nr = PTR_ERR(p);
}
return nr;
}
Do_fork()函数的核心是copy_process()函数,该函数完成了进程创建的绝大部分工作并且也在fork.c定义,copy_process函数较长,逐段往下看:

static struct task_struct *copy_process(unsigned long clone_flags,
unsigned long stack_start,
struct pt_regs *regs,
unsigned long stack_size,
int __user *parent_tidptr,
int __user *child_tidptr,
struct pid *pid)
{
int retval;
struct task_struct *p = NULL;
if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
return ERR_PTR(-EINVAL);
/*
* Thread groups must share signals as well, and detached threads
* can only be started up within the thread group.
*/
if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
return ERR_PTR(-EINVAL);
/*
* Shared signal handlers imply shared VM. By way of the above,
* thread groups also imply shared VM. Blocking this case allows
* for various simplifications in other code.
*/
if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
return ERR_PTR(-EINVAL);
retval = security_task_create(clone_flags);
if (retval)
goto fork_out;
retval = -ENOMEM;
p = dup_task_struct(current);
if (!p)
goto fork_out;
rt_mutex_init_task(p);
#ifdef CONFIG_TRACE_IRQFLAGS
DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
#endif
这段代码首先对传入的clone_flag进行检查,接着调用了dup_task_struct()函数,该函数的主要作用是:为子进程创建一个新的内核栈,复制task_struct结构和thread_info结构,这里只是对结构完整的复制,所以子进程的进程描述符跟父进程完全一样。跟进dup_task_struct()函数看代码:

static struct task_struct *dup_task_struct(struct task_struct *orig)
{
struct task_struct *tsk;
struct thread_info *ti;
prepare_to_copy(orig);
tsk = alloc_task_struct();
if (!tsk)
return NULL;
ti = alloc_thread_info(tsk);
if (!ti) {
free_task_struct(tsk);
return NULL;
}
*tsk = *orig;
tsk->stack = ti;
setup_thread_stack(tsk, orig);
#ifdef CONFIG_CC_STACKPROTECTOR
tsk->stack_canary = get_random_int();
#endif
/* One for us, one for whoever does the "release_task()" (usually parent) */
atomic_set(&tsk->usage,2);
atomic_set(&tsk->fs_excl, 0);
#ifdef CONFIG_BLK_DEV_IO_TRACE
tsk->btrace_seq = 0;
#endif
tsk->splice_pipe = NULL;
return tsk;
}
三、总结linux创建新进程的过程

  系统允许一个进程创建新进程,新进程即为子进程,子进程还可以创建新的子进程,形成进程树结构模型。整个linux系统的所有进程也是一个树形结构。树根是系统自动构造的,即在内核态下执行的0号进程,它是所有进程的祖先。由0号进程创建1号进程(内核态),1号负责执行内核的部分初始化工作及进行系统配置,并创建若干个用于高速缓存和虚拟主存管理的内核线程。随后,1号进程调用execve()运行可执行程序init,并演变成用户态1号进程,即init进程。它按照配置文件/etc/initab的要求,完成系统启动工作,创建编号为1号、2号...的若干终端注册进程getty。每个getty进程设置其进程组标识号,并监视配置到系统终端的接口线路。当检测到来自终端的连接信号时,getty进程将通过函数execve()执行注册程序login,此时用户就可输入注册名和密码进入登录过程,如果成功,由login程序再通过函数execv()执行shell,该shell进程接收getty进程的pid,取代原来的getty进程。再由shell直接或间接地产生其他进程。

上述过程可描述为:0号进程->1号内核进程->1号内核线程->1号用户进程(init进程)->getty进程->shell进程
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: