您的位置:首页 > 编程语言 > C语言/C++

C++ function、bind以及lamda表达式

2015-03-20 11:09 465 查看

本文是C++0x系列的第四篇,主要是内容是C++0x中新增的lambda表达式, function对象和bind机制。之所以把这三块放在一起讲,是因为这三块之间有着非常密切的关系,通过对比学习,加深对这部分内容的理解。在开始之间,首先要讲一个概念,closure(闭包),这个概念是理解lambda的基础。下面我们来看看wikipedia上对于计算机领域的closure的定义:

<span class="pln" style="color: rgb(0, 0, 0);">A closure </span><span class="pun" style="color: rgb(102, 102, 0);">(</span><span class="pln" style="color: rgb(0, 0, 0);">also lexical closure</span><span class="pun" style="color: rgb(102, 102, 0);">,</span><span class="pln" style="color: rgb(0, 0, 0);"> </span><span class="kwd" style="color: rgb(0, 0, 136);">function</span><span class="pln" style="color: rgb(0, 0, 0);"> closure </span><span class="kwd" style="color: rgb(0, 0, 136);">or</span><span class="pln" style="color: rgb(0, 0, 0);"> </span><span class="kwd" style="color: rgb(0, 0, 136);">function</span><span class="pln" style="color: rgb(0, 0, 0);"> value</span><span class="pun" style="color: rgb(102, 102, 0);">)</span><span class="pln" style="color: rgb(0, 0, 0);"> </span><span class="kwd" style="color: rgb(0, 0, 136);">is</span><span class="pln" style="color: rgb(0, 0, 0);"> a </span><span class="kwd" style="color: rgb(0, 0, 136);">function</span><span class="pln" style="color: rgb(0, 0, 0);"> together </span><span class="kwd" style="color: rgb(0, 0, 136);">with</span><span class="pln" style="color: rgb(0, 0, 0);">
a referencing environment </span><span class="kwd" style="color: rgb(0, 0, 136);">for</span><span class="pln" style="color: rgb(0, 0, 0);"> the non</span><span class="pun" style="color: rgb(102, 102, 0);">-</span><span class="kwd" style="color: rgb(0, 0, 136);">local</span><span class="pln" style="color: rgb(0, 0, 0);"> variables of that </span><span class="kwd" style="color: rgb(0, 0, 136);">function</span><span class="pun" style="color: rgb(102, 102, 0);">.</span>
上面的大义是说,closure是一个函数和它所引用的非本地变量的上下文环境的集合。从定义我们可以得知,closure可以访问在它定义范围之外的变量,也即上面提到的non-local vriables,这就大大增加了它的功力。关于closure的最重要的应用就是回调函数,这也是为什么这里把function, bind和lambda放在一起讲的主要原因,它们三者在使用回调函数的过程中各显神通。下面就为大家一步步接开这三者的神秘面纱。

1. function

我们知道,在C++中,可调用实体主要包括函数,函数指针,函数引用,可以隐式转换为函数指定的对象,或者实现了opetator()的对象(即C++98中的functor)。C++0x中,新增加了一个std::function对象,std::function对象是对C++中现有的可调用实体的一种类型安全的包裹(我们知道像函数指针这类可调用实体,是类型不安全的)。我们来看几个关于function对象的例子:

[cpp]
view plaincopyprint?

#include < functional> std::function< size_t (const char*) > print_func; /// normal function -> std::function object size_t CPrint(const char*) { ... } print_func = CPrint; print_func("hello world"): /// functor -> std::function object class CxxPrint { public: size_t operator()(const char*) { ... } }; CxxPrint p; print_func = p; print_func("hello world");

#include < functional>

std::function< size_t (const char*) > print_func;

/// normal function -> std::function object
size_t CPrint(const char*) { ... }
print_func = CPrint;
print_func("hello world"):

/// functor -> std::function object
class CxxPrint
{
public:
size_t operator()(const char*) { ... }
};
CxxPrint p;
print_func = p;
print_func("hello world");


在上面的例子中,我们把一个普通的函数和一个functor赋值给了一个std::function对象,然后我们通过该对象来调用。其它的C++中的可调用实体都可以像上面一样来使用。通过std::function的包裹,我们可以像传递普通的对象一样来传递可调用实体,这样就很好解决了类型安全的问题。了解了std::function的基本用法,下面我们来看一些使用过程中的注意事项:

(1)关于可调用实体转换为std::function对象需要遵守以下两条原则:

a. 转换后的std::function对象的参数能转换为可调用实体的参数

b. 可调用实体的返回值能转换为std::function对象的(这里注意,所有的可调用实体的返回值都与返回void的std::function对象的返回值兼容)。
(2)std::function对象可以refer to满足(1)中条件的任意可调用实体
(3)std::function object最大的用处就是在实现函数回调,使用者需要注意,它不能被用来检查相等或者不相等

2. bind

bind是这样一种机制,它可以预先把指定可调用实体的某些参数绑定到已有的变量,产生一个新的可调用实体,这种机制在回调函数的使用过程中也颇为有用。C++98中,有两个函数bind1st和bind2nd,它们分别可以用来绑定functor的第一个和第二个参数,它们都是只可以绑定一个参数。各种限制,使得bind1st和bind2nd的可用性大大降低。C++0x中,提供了std::bind,它绑定的参数的个数不受限制,绑定的具体哪些参数也不受限制,由用户指定,这个bind才是真正意义上的绑定,有了它,bind1st和bind2nd就没啥用武之地了,因此C++0x中不推荐使用bind1st和bind2nd了,都是deprecated了。下面我们通过例子,来看看bind的用法:

[cpp]
view plaincopyprint?

#include < functional> int Func(int x, int y); auto bf1 = std::bind(Func, 10, std::placeholders::_1); bf1(20); ///< same as Func(10, 20) class A { public: int Func(int x, int y); }; A a; auto bf2 = std::bind(&A::Func, a, std::placeholders::_1, std::placeholders::_2); bf2(10, 20); ///< same as a.Func(10, 20) std::function< int(int)> bf3 = std::bind(&A::Func, a, std::placeholders::_1, 100); bf3(10); ///< same as a.Func(10, 100)

#include < functional>

int Func(int x, int y);
auto bf1 = std::bind(Func, 10, std::placeholders::_1);
bf1(20); ///< same as Func(10, 20)

class A
{
public:
int Func(int x, int y);
};

A a;
auto bf2 = std::bind(&A::Func, a, std::placeholders::_1, std::placeholders::_2);
bf2(10, 20); ///< same as a.Func(10, 20)

std::function< int(int)> bf3 = std::bind(&A::Func, a, std::placeholders::_1, 100);
bf3(10); ///< same as a.Func(10, 100)


上面的例子中,bf1是把一个两个参数普通函数的第一个参数绑定为10,生成了一个新的一个参数的可调用实体; bf2是把一个类成员函数绑定了类对象,生成了一个像普通函数一样的新的可调用实体; bf3是把类成员函数绑定了类对象和第二个参数,生成了一个新的std::function对象。看懂了上面的例子,下面我们来说说使用bind需要注意的一些事项:

(1)bind预先绑定的参数需要传具体的变量或值进去,对于预先绑定的参数,是pass-by-value的
(2)对于不事先绑定的参数,需要传std::placeholders进去,从_1开始,依次递增。placeholder是pass-by-reference的
(3)bind的返回值是可调用实体,可以直接赋给std::function对象
(4)对于绑定的指针、引用类型的参数,使用者需要保证在可调用实体调用之前,这些参数是可用的
(5)类的this可以通过对象或者指针来绑定

3. lambda

讲完了function和bind, 下面我们来看lambda。有python基础的朋友,相信对于lambda不会陌生。看到这里的朋友,请再回忆一下前面讲的closure的概念,lambda就是用来实现closure的东东。它的最大用途也是在回调函数,它和前面讲的function和bind有着千丝万缕的关系。下面我们先通过例子来看看lambda的庐山真面目:

[cpp]
view plaincopyprint?

vector< int> vec; /// 1. simple lambda auto it = std::find_if(vec.begin(), vec.end(), [](int i) { return i > 50; }); class A { public: bool operator(int i) const { return i > 50; } }; auto it = std::find_if(vec.begin(), vec.end(), A()); /// 2. lambda return syntax std::function< int(int)> square = [](int i) -> int { return i * i; } /// 3. lambda expr: capture of local variable { int min_val = 10; int max_val = 1000; auto it = std::find_if(vec.begin(), vec.end(), [=](int i) { return i > min_val && i < max_val; }); auto it = std::find_if(vec.begin(), vec.end(), [&](int i) { return i > min_val && i < max_val; }); auto it = std::find_if(vec.begin(), vec.end(), [=, &max_value](int i) { return i > min_val && i < max_val; }); } /// 4. lambda expr: capture of class member class A { public: void DoSomething(); private: std::vector<int> m_vec; int m_min_val; int m_max_va; }; /// 4.1 capture member by this void A::DoSomething() { auto it = std::find_if(m_vec.begin(), m_vec.end(), [this](int i){ return i > m_min_val && i < m_max_val; }); } /// 4.2 capture member by default pass-by-value void A::DoSomething() { auto it = std::find_if(m_vec.begin(), m_vec.end(), [=](int i){ return i > m_min_val && i < m_max_val; }); } /// 4.3 capture member by default pass-by-reference void A::DoSomething() { auto it = std::find_if(m_vec.begin(), m_vec.end(), [&](int i){ return i > m_min_val && i < m_max_val; }); }

vector< int> vec;
/// 1. simple lambda
auto it = std::find_if(vec.begin(), vec.end(), [](int i) { return i > 50; });
class A
{
public:
bool operator(int i) const { return i > 50; }
};
auto it = std::find_if(vec.begin(), vec.end(), A());

/// 2. lambda return syntax
std::function< int(int)> square = [](int i) -> int { return i * i; }

/// 3. lambda expr: capture of local variable
{
int min_val = 10;
int max_val = 1000;

auto it = std::find_if(vec.begin(), vec.end(), [=](int i) {
return i > min_val && i < max_val;
});

auto it = std::find_if(vec.begin(), vec.end(), [&](int i) {
return i > min_val && i < max_val;
});

auto it = std::find_if(vec.begin(), vec.end(), [=, &max_value](int i) {
return i > min_val && i < max_val;
});
}

/// 4. lambda expr: capture of class member
class A
{
public:
void DoSomething();

private:
std::vector<int>  m_vec;
int               m_min_val;
int               m_max_va;
};

/// 4.1 capture member by this
void A::DoSomething()
{
auto it = std::find_if(m_vec.begin(), m_vec.end(), [this](int i){
return i > m_min_val && i < m_max_val; });
}

/// 4.2 capture member by default pass-by-value
void A::DoSomething()
{
auto it = std::find_if(m_vec.begin(), m_vec.end(), [=](int i){
return i > m_min_val && i < m_max_val; });
}

/// 4.3 capture member by default pass-by-reference
void A::DoSomething()
{
auto it = std::find_if(m_vec.begin(), m_vec.end(), [&](int i){
return i > m_min_val && i < m_max_val; });
}


上面的例子基本覆盖到了lambda表达的基本用法。我们一个个来分析每个例子(标号与上面代码注释中1,2,3,4一致):

(1)这是最简单的lambda表达式,可以认为用了lambda表达式的find_if和下面使用了functor的find_if是等价的
(2)这个是有返回值的lambda表达式,返回值的语法如上面所示,通过->写在参数列表的括号后面。返回值在下面的情况下是可以省略的:

a. 返回值是void的时候

b. lambda表达式的body中有return expr,且expr的类型与返回值的一样
(3)这个是lambda表达式capture本地局部变量的例子,这里三个小例子,分别是capture时不同的语法,第一个小例子中=表示capture的变量pass-by-value, 第二个小拿出中&表示capture的变量pass-by-reference,第三个小例子是说指定了default的pass-by-value, 但是max_value这个单独pass-by-reference
(4)这个是lambda表达式capture类成员变量的例子,这里也有三个小例子。第一个小例子是通过this指针来capture成员变量,第二、三个是通过缺省的方式,只不过第二个是通过pass-by-value的方式,第三个是通过pass-by-reference的

分析完了上面的例子,我们来总结一下关于lambda表达式使用时的一些注意事项:

(1)lambda表达式要使用引用变量,需要遵守下面的原则:

a. 在调用上下文中的局部变量,只有capture了才可以引用(如上面的例子3所示)

b. 非本地局部变量可以直接引用
(2)使用者需要注意,closure(lambda表达式生成的可调用实体)引用的变量(主要是指针和引用),在closure调用完成之前,必须保证可用,这一点和上面bind绑定参数之后生成的可调用实体是一致的
(3)关于lambda的用处,就是用来生成closure,而closure也是一种可调用实体,所以可以通过std::function对象来保存生成的closure,也可以直接用auto

通过上面的介绍,我们基本了解了function, bind和lambda的用法,把三者结合起来,C++将会变得非常强大,有点函数式编程的味道了。最后,这里再补充一点,对于用bind来生成function和用lambda表达式来生成function, 通常情况下两种都是ok的,但是在参数多的时候,bind要传入很多的std::placeholders,而且看着没有lambda表达式直观,所以通常建议优先考虑使用lambda表达式。
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: